Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Microbiol ; 24(2): 878-893, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-33350053

RESUMO

Iron is an essential nutrient for bacterial growth and the cause of a fierce battle between the pathogen and host during infection. Bacteria have developed several strategies to access iron from the host, the most common being the production of siderophores, small iron-chelating molecules secreted into the bacterial environment. The opportunist pathogen Pseudomonas aeruginosa produces two siderophores, pyoverdine and pyochelin, and is also able to use a wide panoply of xenosiderophores, siderophores produced by other microorganisms. Here, we demonstrate that catecholamine neurotransmitters (dopamine, l-DOPA, epinephrine and norepinephrine) are able to chelate iron and efficiently bring iron into P. aeruginosa cells via TonB-dependent transporters (TBDTs). Bacterial growth assays under strong iron-restricted conditions and with numerous mutants showed that the TBDTs involved are PiuA and PirA. PiuA exhibited more pronounced specificity for dopamine uptake than for norepinephrine, epinephrine and l-DOPA, whereas PirA specificity appeared to be higher for l-DOPA and norepinephrine. Proteomic and qRT-PCR approaches showed pirA transcription and expression to be induced in the presence of all four catecholamines. Finally, the oxidative properties of catecholamines enable them to reduce iron, and we observed ferrous iron uptake via the FeoABC system in the presence of l-DOPA.


Assuntos
Pseudomonas aeruginosa , Sideróforos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Catecolaminas/metabolismo , Ferro/metabolismo , Neurotransmissores/metabolismo , Proteômica , Pseudomonas aeruginosa/metabolismo , Sideróforos/metabolismo
2.
Metallomics ; 12(12): 2108-2120, 2020 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-33355556

RESUMO

Siderophores are iron chelators produced by bacteria to access iron, an essential nutrient. The pathogen Pseudomonas aeruginosa produces two siderophores, pyoverdine and pyochelin, the former with a high affinity for iron and the latter with a lower affinity. Furthermore, the production of both siderophores involves a positive auto-regulatory loop: the presence of the ferri-siderophore complex is essential for their large production. Since pyochelin has a lower affinity for iron it was hard to consider the role of pyochelin in drastic competitive environments where the host or the environmental microbiota produce strong iron chelators and may inhibit iron chelation by pyochelin. We showed here that the pyochelin pathway overcomes this difficulty through a more complex regulating mechanism for pyochelin production than previously described. Indeed, in the absence of pyoverdine, and thus higher difficulty to access iron, the bacteria are able to produce pyochelin independently of the presence of ferri-pyochelin. The regulation of the pyochelin pathway appeared to be more complex than expected with a more intricate tuning between repression and activation. Consequently, when the bacteria cannot produce pyoverdine they are able to produce pyochelin even in the presence of strong iron chelators. Such results support a more complex and varied role for this siderophore than previously described, and complexify the battle for iron during P. aeruginosa infection.


Assuntos
Fenóis/metabolismo , Pseudomonas aeruginosa/metabolismo , Sideróforos/metabolismo , Tiazóis/metabolismo , Humanos , Ferro/metabolismo , Oligopeptídeos/metabolismo , Infecções por Pseudomonas/microbiologia
3.
Metallomics ; 11(11): 1937-1951, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31633703

RESUMO

Much data shows that biological metals other than Fe3+ can interfere with Fe3+ acquisition by siderophores in bacteria. Siderophores are small Fe3+ chelators produced by the microorganisms to obtain access to Fe3+. Here, we show that Co2+ is imported into Pseudomonas aeruginosa cells in a complex with the siderophore pyochelin (PCH) by the ferri-PCH outer membrane transporter FptA. Moreover, the presence of Co2+ in the bacterial environment strongly affects the production of PCH. Proteomic and transcriptomic approaches showed that a decrease of PCH production is associated with repression of the expression of the genes involved in PCH biosynthesis. We used various molecular biology approaches to show that this repression is not Fur-(ferric uptake transcriptional regulator) dependent but due to competition of PCH-Co with PCH-Fe for PchR (transcriptional activator), thus inhibiting the formation of PchR-PCH-Fe and consequently the expression of the PCH genes. We observed a similar mechanism of repression of PCH production, but to a lesser extent, by Ni2+, but not for Zn2+, Cu2+, or Mn2+. Here, we show, for the first time at a molecular level, how the presence of a contaminant metal can interfere with Fe3+ acquisition by the siderophores PCH and PVD.


Assuntos
Cobalto/metabolismo , Ferro/metabolismo , Sideróforos/metabolismo , Proteínas de Bactérias/metabolismo , Cobalto/farmacologia , Regulação para Baixo/genética , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Modelos Biológicos , Oligopeptídeos/química , Oligopeptídeos/metabolismo , Óperon/genética , Fenóis/química , Fenóis/metabolismo , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Tiazóis/química , Tiazóis/metabolismo , Regulação para Cima/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...