Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 29(12): 18059-18069, 2021 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-34154073

RESUMO

Silicate bonding is a flexible bonding method that enables room-temperature bonding of many types of materials with only moderate flatness constraints. It is a promising approach for bonding components in high power laser systems, since it results in a thin and low-absorption interface layer between the bonded materials. Here we demonstrate for the first time silicate bonding of a sapphire window to a SEmiconductor Saturable Absorber Mirror (SESAM) and use the composite structure to mode-lock a high-power thin-disk laser. We characterize the fabricated devices both theoretically and experimentally and show how the thermally induced lens of the composite structure can be tuned both in magnitude and sign via the thickness of the sapphire window. We demonstrate mode-locking of a high-power thin-disk laser oscillator with these devices. The altered thermal lens allows us to increase the output power to 233 W, a 70-W-improvement compared to the results achieved with a state-of-the-art SESAM in the same cavity.

2.
Opt Express ; 27(22): 31465-31474, 2019 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-31684382

RESUMO

We report a semiconductor saturable absorber mirror (SESAM)-modelocked thin-disk laser oscillator delivering a record 350-W average output power with 940-fs, 39-µJ pulses at 8.88-MHz repetition rate and 37-MW peak power. This oscillator is based on the Yb:YAG gain material and has a large pump spot on the disk. The cavity design includes an imaging scheme, which results in multiple reflections on the disk gain medium to enable a larger output coupling rate compared to those used in thin-disk oscillators with a single reflection on the disk. This reduces the intracavity power for a given output power, thus decreasing the stress on the intracavity components. We operate the laser in a low-pressure environment in order to limit the disk's thermal lensing and drastically reduce the nonlinearity picked up in the intracavity air medium. The combination of the imaging scheme and low-pressure operation paves the way to further power scaling of ultrafast thin-disk oscillators toward the kW milestone.

3.
Opt Express ; 26(10): 12648-12659, 2018 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-29801303

RESUMO

We unveil a gas-lens effect in kW-class thin-disk lasers, which accounts in our experiments for 33% of the overall disk thermal lensing. By operating the laser in vacuum, the gas lens vanishes. This leads to a lower overall thermal lensing and hence to a significantly extended power range of optimal beam quality. In our high-power continuous-wave (cw) thin-disk laser, we obtain single-transverse-mode operation, i.e. M2 < 1.1, in a helium or vacuum environment over an output-power range from 300 W to 800 W, which is 70% broader than in an air environment. In order to predict the magnitude of the gas-lens effect in different thin-disk laser systems and gain a deeper understanding of the effect of the heated gas in front of the disk, we develop a new numerical model. It takes into account the heat transfer between the thin disk and the surrounding gas and calculates the lensing effect of the heated gas. Using this model, we accurately reproduce our experimental results and additionally predict, for the first time by means of a theoretical tool, the existence of the known gas-wedge effect due to gas convection. The gas-lens and gas-wedge effects are relevant to all high-power thin-disk systems, both oscillators and amplifiers, operating in cw as well as pulsed mode. Specifically, canceling the gas-lens effect becomes crucial for kW power scaling of thin-disk oscillators because of the larger mode area on the disk and the resulting higher sensitivity to the disk thermal lens.

4.
Opt Lett ; 42(24): 5170-5173, 2017 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-29240165

RESUMO

We demonstrate a compact extreme ultraviolet (XUV) source based on high-harmonic generation (HHG) driven directly inside the cavity of a mode-locked thin-disk laser oscillator. The laser is directly diode-pumped at a power of only 51 W and operates at a wavelength of 1034 nm and a 17.35 MHz repetition rate. We drive HHG in a high-pressure xenon gas jet with an intracavity peak intensity of 2.8×1013 W/cm2 and 320 W of intracavity average power. Despite the high-pressure gas jet, the laser operates at high stability. We detect harmonics up to the 17th order (60.8 nm, 20.4 eV) and estimate a flux of 2.6×108 photons/s for the 11th harmonic (94 nm, 13.2 eV). Due to the power scalability of the thin-disk concept, this class of compact XUV sources has the potential to become a versatile tool for areas such as attosecond science, XUV spectroscopy, and high-resolution imaging.

5.
Opt Express ; 25(19): 22519-22536, 2017 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-29041561

RESUMO

We present a high-peak-power SESAM-modelocked thin-disk laser (TDL) based on the gain material Yb-doped lutetia (Yb:Lu2O3), which exceeds a peak-power of 10 MW for the first time. We generate pulses as short as 534 fs with an average power of 90 W and a peak power of 10.1 MW, and in addition a peak power as high as 12.3 MW with 616-fs pulses and 82-W average power. The center lasing wavelength is 1033 nm and the pulse repetition rates are around 10 MHz. We discuss and explain the current limitations with numerical models, which show that the current peak power is limited in soliton modelocking by the interplay of the gain bandwidth and the induced absorption in the SESAM with subsequent thermal lensing effects. We use our numerical model which is validated by the current experimental results to discuss a possible road map to scale the peak power into the 100-MW regime and at the same time reduce the pulse duration further to sub-200 fs. We consider Yb:Lu2O3 as currently the most promising gain material for the combination of high peak power and short pulse duration in the thin-disk-laser geometry.

6.
Opt Express ; 25(19): 23254-23266, 2017 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-29041626

RESUMO

We demonstrate a frequency-doubling nonlinear-mirror (NLM) modelocked thin-disk laser. This modelocking technique, composed of an intracavity second harmonic crystal in combination with a dichroic output coupler, offers robust operation decoupled from cavity stability (as in semiconductor saturable absorber mirror (SESAM) modelocking) combined with an ultrafast saturable loss and high modulation depth (as in Kerr-lens modelocking (KLM)). With our NLM diode-pumped Yb:YAG thin-disk laser we achieve 21 W of average power at 323-fs pulse duration, which is an order of magnitude shorter than the previously obtained duration with the same technique in bulk lasers. Using these first results, we present a theoretical model for the NLM technique, which accurately predicts its loss modulation properties and the shortest achievable pulse duration without relying on any fitting parameters. Based on this simulation, we expect that the NLM technique will enable thin-disk lasers with average power of more than 100 W, with potentially sub-200 fs pulses. This could potentially solve the pulse duration limitations with SESAM modelocked Yb:YAG thin-disk lasers without imposing strong cavity stability constraints such as in KLM.

7.
Opt Express ; 25(2): 1452-1462, 2017 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-28158027

RESUMO

We present the first demonstration of a thin-disk laser based on the gain material Yb:GGG. This material has many desirable properties for the thin-disk geometry: a high thermal conductivity, which is nearly independent of the doping concentration, a low quantum defect, low-temperature growth, and a broadband absorption spectrum, making it a promising contender to the well-established Yb:YAG for high-power applications. In continuous wave laser operation, we demonstrate output powers above 50 W, which is an order of magnitude higher than previously achieved with this material in the bulk geometry. We compare this performance with an Yb:YAG disk under identical pumping conditions and find comparable output characteristics (with typical optical-to-optical slope efficiencies >66%). Additionally, with the help of finite-element-method simulations, we show the advantageous heat-removal capabilities of Yb:GGG compared to Yb:YAG, resulting in >50% lower thermal lensing for thin Yb:GGG disks compared to Yb:YAG disks. The equivalent optical performance of the two crystals in combination with the easy growth and the significant thermal benefits of Yb:GGG show the large potential of future high-power thin-disk amplifiers and lasers based on this material, both for industrial and scientific applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA