Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Plant Physiol ; 169(4): 2553-71, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26443676

RESUMO

The epidermis of aerial plant organs is the primary source of building blocks forming the outer surface cuticular layer. To examine the relationship between epidermal cell development and cuticle assembly in the context of fruit surface, we investigated the tomato (Solanum lycopersicum) MIXTA-like gene. MIXTA/MIXTA-like proteins, initially described in snapdragon (Antirrhinum majus) petals, are known regulators of epidermal cell differentiation. Fruit of transgenically silenced SlMIXTA-like tomato plants displayed defects in patterning of conical epidermal cells. They also showed altered postharvest water loss and resistance to pathogens. Transcriptome and cuticular lipids profiling coupled with comprehensive microscopy revealed significant modifications to cuticle assembly and suggested SlMIXTA-like to regulate cutin biosynthesis. Candidate genes likely acting downstream of SlMIXTA-like included cytochrome P450s (CYPs) of the CYP77A and CYP86A subfamilies, LONG-CHAIN ACYL-COA SYNTHETASE2, GLYCEROL-3-PHOSPHATE SN-2-ACYLTRANSFERASE4, and the ATP-BINDING CASSETTE11 cuticular lipids transporter. As part of a larger regulatory network of epidermal cell patterning and L1-layer identity, we found that SlMIXTA-like acts downstream of SlSHINE3 and possibly cooperates with homeodomain Leu zipper IV transcription factors. Hence, SlMIXTA-like is a positive regulator of both cuticle and conical epidermal cell formation in tomato fruit, acting as a mediator of the tight association between fruit cutin polymer formation, cuticle assembly, and epidermal cell patterning.


Assuntos
Frutas/genética , Lipídeos/biossíntese , Solanum lycopersicum/genética , Fatores de Transcrição/metabolismo , Frutas/crescimento & desenvolvimento , Frutas/metabolismo , Solanum lycopersicum/crescimento & desenvolvimento , Solanum lycopersicum/metabolismo , Fenótipo , Epiderme Vegetal/genética , Epiderme Vegetal/crescimento & desenvolvimento , Epiderme Vegetal/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Fatores de Transcrição/genética
2.
Phytochemistry ; 117: 388-399, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26164240

RESUMO

The role and fate of Jasmonoyl-Phenylalanine (JA-Phe), an understudied conjugate in the jasmonate pathway remain to be unraveled. We addressed here the possibility of JA-Phe oxidative turnover by cytochrome P450s of the CYP94 family. Leaf wounding or fungal infection in Arabidopsis resulted in accumulation of JA-Phe, 12-hydroxyl (12OH-JA-Phe) and 12-carboxyl (12COOH-JA-Phe) derivatives, with patterns differing from those previously described for Jasmonoyl-Isoleucine. In vitro, yeast-expressed cytochromes P450 CYP94B1, CYP94B3 and CYP94C1 differentially oxidized JA-Phe to 12-hydroxyl, 12-aldehyde and 12-carboxyl derivatives. Furthermore, a new aldehyde jasmonate, 12CHO-JA-Ile was detected in wounded plants. Metabolic analysis of CYP94B3 and CYP94C1 loss- and gain-of-function plant lines showed that 12OH-JA-Phe was drastically reduced in cyp94b3 but not affected in cyp94c1, while single or double mutants lacking CYP94C1 accumulated less 12COOH-JA-Phe than WT plants. This, along with overexpressing lines, demonstrates that hydroxylation by CYP94B3 and carboxylation by CYP94C1 accounts for JA-Phe turnover in planta. Evolutionary study of the CYP94 family in the plant kingdom suggests conserved roles of its members in JA conjugate homeostasis and possibly in adaptative functions. Our work extends the range and complexity of JA-amino acid oxidation by multifunctional CYP94 enzymes in response to environmental cues.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Ciclopentanos/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Isoleucina/análogos & derivados , Fenilalanina/análogos & derivados , Folhas de Planta/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Sistema Enzimático do Citocromo P-450/genética , Flores/metabolismo , Isoleucina/metabolismo , Mutação , Oxirredução , Fenilalanina/metabolismo , Filogenia
3.
J Integr Plant Biol ; 56(10): 979-94, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24798002

RESUMO

Anther cuticle and pollen exine act as protective envelopes for the male gametophyte or pollen grain, but the mechanism underlying the synthesis of these lipidic polymers remains unclear. Previously, a tapetum-expressed CYP703A3, a putative cytochrome P450 fatty acid hydroxylase, was shown to be essential for male fertility in rice (Oryza sativa L.). However, the biochemical and biological roles of CYP703A3 has not been characterized. Here, we observed that cyp703a3-2 caused by one base insertion in CYP703A3 displays defective pollen exine and anther epicuticular layer, which differs from Arabidopsis cyp703a2 in which only defective pollen exine occurs. Consistently, chemical composition assay showed that levels of cutin monomers and wax components were dramatically reduced in cyp703a3-2 anthers. Unlike the wide range of substrates of Arabidopsis CYP703A2, CYP703A3 functions as an in-chain hydroxylase only for a specific substrate, lauric acid, preferably generating 7-hydroxylated lauric acid. Moreover, chromatin immunoprecipitation and expression analyses revealed that the expression of CYP703A3 is directly regulated by Tapetum Degeneration Retardation, a known regulator of tapetum PCD and pollen exine formation. Collectively, our results suggest that CYP703A3 represents a conserved and diversified biochemical pathway for in-chain hydroxylation of lauric acid required for the development of male organ in higher plants.


Assuntos
Sistema Enzimático do Citocromo P-450/metabolismo , Flores/crescimento & desenvolvimento , Oryza/enzimologia , Proteínas de Plantas/metabolismo , Sequência de Aminoácidos , Sequência de Bases , Ácidos Láuricos/metabolismo , Lipídeos de Membrana/metabolismo , Dados de Sequência Molecular , Oryza/genética , Oryza/crescimento & desenvolvimento , Fenótipo , Ceras/metabolismo
4.
New Phytol ; 197(2): 468-480, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23205954

RESUMO

Fleshy tomato fruit typically lacks stomata; therefore, a proper cuticle is particularly vital for fruit development and interaction with the surroundings. Here, we characterized the tomato SlSHINE3 (SlSHN3) transcription factor to extend our limited knowledge regarding the regulation of cuticle formation in fleshy fruits. We created SlSHN3 overexpressing and silenced plants, and used them for detailed analysis of cuticular lipid compositions, phenotypic characterization, and the study on the mode of SlSHN3 action. Heterologous expression of SlSHN3 in Arabidopsis phenocopied overexpression of the Arabidopsis SHNs. Silencing of SlSHN3 results in profound morphological alterations of the fruit epidermis and significant reduction in cuticular lipids. We demonstrated that SlSHN3 activity is mediated by control of genes associated with cutin metabolism and epidermal cell patterning. As with SlSHN3 RNAi lines, mutation in the SlSHN3 target gene, SlCYP86A69, resulted in severe cutin deficiency and altered fruit surface architecture. In vitro activity assays demonstrated that SlCYP86A69 possesses NADPH-dependent ω-hydroxylation activity, particularly of C18:1 fatty acid to the 18-hydroxyoleic acid cutin monomer. This study provided insights into transcriptional mechanisms mediating fleshy fruit cuticle formation and highlighted the link between cutin metabolism and the process of fruit epidermal cell patterning.


Assuntos
Padronização Corporal , Frutas/crescimento & desenvolvimento , Epiderme Vegetal/crescimento & desenvolvimento , Proteínas de Plantas/metabolismo , Solanum lycopersicum/crescimento & desenvolvimento , Fatores de Transcrição/metabolismo , Alelos , Sequência de Aminoácidos , Arabidopsis/genética , Padronização Corporal/genética , Colletotrichum/fisiologia , Regulação para Baixo/genética , Frutas/genética , Regulação da Expressão Gênica de Plantas , Inativação Gênica , Genes de Plantas/genética , Solanum lycopersicum/enzimologia , Solanum lycopersicum/genética , Solanum lycopersicum/microbiologia , Lipídeos de Membrana/metabolismo , Dados de Sequência Molecular , Mutação/genética , Fenótipo , Epiderme Vegetal/genética , Proteínas de Plantas/química , Plantas Geneticamente Modificadas , Polimerização , Regiões Promotoras Genéticas/genética , Proteínas Recombinantes/metabolismo , Homologia de Sequência de Aminoácidos , Fatores de Transcrição/química , Ceras/metabolismo
5.
J Biol Chem ; 287(9): 6296-306, 2012 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-22215670

RESUMO

The jasmonate hormonal pathway regulates important defensive and developmental processes in plants. Jasmonoyl-isoleucine (JA-Ile) has been identified as a specific ligand binding the COI1-JAZ co-receptor to relieve repression of jasmonate responses. Two JA-Ile derivatives, 12OH-JA-Ile and 12COOH-JA-Ile, accumulate in wounded Arabidopsis leaves in a COI1- and JAR1-dependent manner and reflect catabolic turnover of the hormone. Here we report the biochemical and genetic characterization of two wound-inducible cytochromes P450, CYP94C1 and CYP94B3, that are involved in JA-Ile oxidation. Both enzymes expressed in yeast catalyze two successive oxidation steps of JA-Ile with distinct characteristics. CYP94B3 performed efficiently the initial hydroxylation of JA-Ile to 12OH-JA-Ile, with little conversion to 12COOH-JA-Ile, whereas CYP94C1 catalyzed preferentially carboxy-derivative formation. Metabolic analysis of loss- and gain-of-function plant lines were consistent with in vitro enzymatic properties. cyp94b3 mutants were largely impaired in 12OH-JA-Ile levels upon wounding and to a lesser extent in 12COOH-JA-Ile levels. In contrast, cyp94c1 plants showed wild-type 12OH-JA-Ile accumulation but lost about 60% 12COOH-JA-Ile. cyp94b3cyp94c1 double mutants hyperaccumulated JA-Ile with near abolition of 12COOH-JA-Ile. Distinct JA-Ile oxidation patterns in different plant genotypes were correlated with specific JA-responsive transcript profiles, indicating that JA-Ile oxidation status affects signaling. Interestingly, exaggerated JA-Ile levels were associated with JAZ repressor hyperinduction but did not enhance durably defense gene induction, revealing a novel negative feedback signaling loop. Finally, interfering with CYP94 gene expression affected root growth sensitivity to exogenous jasmonic acid. These results identify CYP94B3/C1-mediated oxidation as a major catabolic route for turning over the JA-Ile hormone.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Ciclopentanos/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Isoleucina/análogos & derivados , Reguladores de Crescimento de Plantas/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Sistema Enzimático do Citocromo P-450/genética , Genótipo , Isoleucina/metabolismo , Metabolismo/fisiologia , Nucleotidiltransferases/metabolismo , Oxirredução , Folhas de Planta/enzimologia , Transdução de Sinais/fisiologia
6.
Plant Mol Biol ; 52(3): 495-509, 2003 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12956522

RESUMO

The tobacco gene encoding caffeic acid-O-methyltransferase of class II (COMT II) was isolated, including a 1.7 kb 5'-flanking region. Sequence motifs were identified in COMT II gene promoter which are present in many genes of the phenylpropanoid pathway or in stress-inducible pathogenesis-related (PR) genes. A 1215 bp COMT II promoter fragment was transcriptionally fused to the GUS coding region and its activity pattern studied by stable expression of the fusion gene in tobacco. Transgenic lines were analysed for GUS and OMT activities upon infection, UV irradiation, wounding and treatment by various signalling compounds. The promoter proved responsive to various biotic and abiotic elicitors and to infection by avirulent and virulent pathogens. During the course of the hypersensitive reaction of tobacco to TMV two peaks were detected, an early one induced by the inoculation process and a second one at the onset of lesion formation. Parallel changes were observed between GUS activity that reflected the activity of the COMT II promoter fragment and COMT II activity that mirrored expression of the endogenous COMT II gene, indicating that COMT II pattern of expression is established at the transcriptional level. Various promoter fragments were fused to the GUS gene and revealed that gene induction by MeJA or UV and by TMV or wounding requires different sequences included in a 74 bp fragment. When the 74 bp sequence was multimerized and inserted ahead of the CaMV 35S RNA minimal promoter, one construct was shown to be capable of driving expression of the reporter gene around the TMV-infected sites in transgenic tobacco plants.


Assuntos
Genes de Plantas/genética , Metiltransferases/genética , Nicotiana/genética , Acetatos/farmacologia , Sequência de Bases , Ciclopentanos/farmacologia , DNA de Plantas/química , DNA de Plantas/genética , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Regulação Enzimológica da Expressão Gênica/efeitos da radiação , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Glucuronidase/genética , Glucuronidase/metabolismo , Dados de Sequência Molecular , Oxilipinas , Reguladores de Crescimento de Plantas/farmacologia , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas/genética , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Análise de Sequência de DNA , Estresse Mecânico , Nicotiana/enzimologia , Nicotiana/virologia , Vírus do Mosaico do Tabaco/crescimento & desenvolvimento , Ativação Transcricional , Raios Ultravioleta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA