Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38018144

RESUMO

Silver thin film mirrors are attractive candidates for use as specular back reflectors to enhance broadband light absorption via strong optical interference in ultrathin film semiconductor photoabsorbers. However, deposition of metal-oxide absorbers often requires exposure to high temperature in an oxygen atmosphere, conditions that cause thermal etching and degrade the specular reflectance of silver films. Here, we overcome this challenge and demonstrate that epitaxial growth of silver mitigates thermal etching under the high-temperature oxygen-containing environments that cause polycrystalline films to degrade. The degree of thermal etching resistance is related to the epitaxial film structure, where high-quality films completely prevent thermal etching, allowing for direct deposition of metal-oxide thin film photoabsorbers at elevated temperatures without any degradation of the optical properties of the silver layer. As a proof of concept for device applications, a metal-oxide photoanode for photoelectrochemical water splitting is fabricated by directly growing epitaxial SnO2 and Ti-doped α-Fe2O3 (hematite) thin films onto stabilized silver reflectors by pulsed laser deposition. The photoanode displays enhanced broadband light absorption due to strong interference effects enabled by the highly reflective silver film and demonstrates stable operation in a photoelectrochemical cell under conditions of water photo-oxidation in alkaline electrolyte.

2.
Microsc Microanal ; 29(3): 919-930, 2023 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-37749692

RESUMO

We measure the mean inner potential (MIP) of hematite, α-Fe2O3, using electron holography and transmission electron microscopy. Since the MIP is sensitive to valence electrons, we propose its use as a chemical bonding parameter for solids. Hematite can test the sensitivity of the MIP as a bonding parameter because of the Morin magnetic phase transition. Across this transition temperature, no change in the corundum crystal structure can be distinguished, while a change in hybridized Fe-3d and O-2p states was reported, affecting ionic bonding. For a given crystallographic phase, the change in the MIP with temperature is expected to be minor due to thermal expansion. Indeed, we measure the temperature dependence in corundum α-Al2O3(112¯0) between 95 and 295 K showing a constant MIP value of ∼16.8 V within the measurement accuracy of 0.45 V. Thus, our objectives are as follows: measure the MIP of hematite as a function of temperature and examine the sensitivity of the MIP as a bonding parameter for crystals. Measured MIPs of α-Fe2O3(112¯0) above the Morin transition are equal, 17.85 ± 0.50 V, 17.93 ± 0.50 V, at 295 K, 230 K, respectively. Below the Morin transition, at 95 K, a significant reduction of ∼1.3 V is measured to 16.56 ± 0.46 V. We show that this reduction follows charge redistribution resulting in increased ionic bonding.

4.
Nat Mater ; 20(6): 833-840, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33875852

RESUMO

Light absorption in strongly correlated electron materials can excite electrons and holes into a variety of different states. Some of these excitations yield mobile charge carriers, whereas others result in localized states that cannot contribute to photocurrent. The photogeneration yield spectrum, ξ(λ), represents the wavelength-dependent ratio between the contributing absorption that ultimately generates mobile charge carriers and the overall absorption. Despite being a vital material property, it is not trivial to characterize. Here, we present an empirical method to extract ξ(λ) through optical and external quantum efficiency measurements of ultrathin films. We applied this method to haematite photoanodes for water photo-oxidation, and observed that it is self-consistent for different illumination conditions and applied potentials. We found agreement between the extracted ξ(λ) spectrum and the photoconductivity spectrum measured by time-resolved microwave conductivity. These measurements revealed that mobile charge carrier generation increases with increasing energy across haematite's absorption spectrum. Low-energy non-contributing absorption fundamentally limits the photoconversion efficiency of haematite photoanodes and provides an upper limit to the achievable photocurrent that is substantially lower than that predicted based solely on absorption above the bandgap. We extended our analysis to TiO2 and BiVO4 photoanodes, demonstrating the broader utility of the method for determining ξ(λ).

5.
Nano Lett ; 20(1): 306-313, 2020 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-31809058

RESUMO

The compensated magnetic order and characteristic terahertz frequencies of antiferromagnetic materials make them promising candidates to develop a new class of robust, ultrafast spintronic devices. The manipulation of antiferromagnetic spin-waves in thin films is anticipated to lead to new exotic phenomena such as spin-superfluidity, requiring an efficient propagation of spin-waves in thin films. However, the reported decay length in thin films has so far been limited to a few nanometers. In this work, we achieve efficient spin-wave propagation over micrometer distances in thin films of the insulating antiferromagnet hematite with large magnetic domains while evidencing much shorter attenuation lengths in multidomain thin films. Through transport and magnetic imaging, we determine the role of the magnetic domain structure and spin-wave scattering at domain walls to govern the transport. We manipulate the spin transport by tailoring the domain configuration through field cycle training. For the appropriate crystalline orientation, zero-field spin transport is achieved across micrometers, as required for device integration.

6.
Nat Commun ; 9(1): 4060, 2018 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-30301897

RESUMO

H2O2 is a sacrificial reductant that is often used as a hole scavenger to gain insight into photoanode properties. Here we show a distinct mechanism of H2O2 photo-oxidation on haematite (α-Fe2O3) photoanodes. We found that the photocurrent voltammograms display non-monotonous behaviour upon varying the H2O2 concentration, which is not in accord with a linear surface reaction mechanism that involves a single reaction site as in Eley-Rideal reactions. We postulate a nonlinear kinetic mechanism that involves concerted interaction between adions induced by H2O2 deprotonation in the alkaline solution with adjacent intermediate species of the water photo-oxidation reaction, thereby involving two reaction sites as in Langmuir-Hinshelwood reactions. The devised kinetic model reproduces our main observations and predicts coexistence of two surface reaction paths (bi-stability) in a certain range of potentials and H2O2 concentrations. This prediction is confirmed experimentally by observing a hysteresis loop in the photocurrent voltammogram measured in the predicted coexistence range.

7.
Adv Mater ; 30(35): e1802781, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29987900

RESUMO

Optical interference is used to enhance light-matter interaction and harvest broadband light in ultrathin semiconductor absorber films on specular back-reflectors. However, the high-temperature processing in oxygen atmosphere required for oxide absorbers often degrades metallic back-reflectors and their specular reflectance. In order to overcome this problem, a newly developed film flip and transfer process is presented that enables high-temperature processing without degradation of the metallic back-reflector and without the need of passivation interlayers. The film flip and transfer process improves the performance of photoanodes for photoelectrochemical water splitting comprising ultrathin (<20 nm) hematite (α-Fe2 O3 ) films on silver-gold alloy (90 at% Ag-10 at% Au) back-reflectors. Specular back-reflectors are obtained with high reflectance below hematite films, which is necessary for maximizing the productive light absorption in the hematite film and minimizing nonproductive absorption in the back-reflector. Furthermore, the film flip and transfer process opens up a new route to attach thin film stacks onto a wide range of substrates including flexible or temperature sensitive materials.

8.
J Phys Chem Lett ; 9(6): 1466-1472, 2018 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-29512388

RESUMO

Photoelectrochemical impedance spectroscopy (PEIS) is a useful tool for the characterization of photoelectrodes for solar water splitting. However, the analysis of PEIS spectra often involves a priori assumptions that might bias the results. This work puts forward an empirical method that analyzes the distribution of relaxation times (DRT), obtained directly from the measured PEIS spectra of a model hematite photoanode. By following how the DRT evolves as a function of control parameters such as the applied potential and composition of the electrolyte solution, we obtain unbiased insights into the underlying mechanisms that shape the photocurrent. In a subsequent step, we fit the data to a process-oriented equivalent circuit model (ECM) whose makeup is derived from the DRT analysis in the first step. This yields consistent quantitative trends of the dominant polarization processes observed. Our observations reveal a common step for the photo-oxidation reactions of water and H2O2 in alkaline solution.

9.
Adv Mater ; 30(41): e1706577, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29504160

RESUMO

In recent years, hematite's potential as a photoanode material for solar hydrogen production has ignited a renewed interest in its physical and interfacial properties, which continues to be an active field of research. Research on hematite photoanodes provides new insights on the correlations between electronic structure, transport properties, excited state dynamics, and charge transfer phenomena, and expands our knowledge on solar cell materials into correlated electron systems. This research news article presents a snapshot of selected theoretical and experimental developments linking the electronic structure to the photoelectrochemical performance, with particular focus on optoelectronic properties and charge carrier dynamics.

10.
Phys Chem Chem Phys ; 19(31): 20383-20392, 2017 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-28721404

RESUMO

The oxygen evolution reaction (OER) at the surface of semiconductor photoanodes is critical for photoelectrochemical water splitting. This reaction involves photo-generated holes that oxidize water via charge transfer at the photoanode/electrolyte interface. However, a certain fraction of the holes that reach the surface recombine with electrons from the conduction band, giving rise to the surface recombination loss. The charge transfer efficiency, ηt, defined as the ratio between the flux of holes that contribute to the water oxidation reaction and the total flux of holes that reach the surface, is an important parameter that helps to distinguish between bulk and surface recombination losses. However, accurate determination of ηt by conventional voltammetry measurements is complicated because only the total current is measured and it is difficult to discern between different contributions to the current. Chopped light measurement (CLM) and hole scavenger measurement (HSM) techniques are widely employed to determine ηt, but they often lead to errors resulting from instrumental as well as fundamental limitations. Intensity modulated photocurrent spectroscopy (IMPS) is better suited for accurate determination of ηt because it provides direct information on both the total photocurrent and the surface recombination current. However, careful analysis of IMPS measurements at different light intensities is required to account for nonlinear effects. This work compares the ηt values obtained by these methods using heteroepitaxial thin-film hematite photoanodes as a case study. We show that a wide spread of ηt values is obtained by different analysis methods, and even within the same method different values may be obtained depending on instrumental and experimental conditions such as the light source and light intensity. Statistical analysis of the results obtained for our model hematite photoanode show good correlation between different methods for measurements carried out with the same light source, light intensity and potential. However, there is a considerable spread in the results obtained by different methods. For accurate determination of ηt, we recommend IMPS measurements in operando with a bias light intensity such that the irradiance is as close as possible to the AM1.5 Global solar spectrum.

11.
Langmuir ; 27(19): 11966-72, 2011 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-21848310

RESUMO

A new method for studying the dynamics of a sessile drop by atomic force microscopy (AFM) is demonstrated. A hydrophobic microsphere (radius, r ∼ 20-30 µm) is brought into contact with a small sessile water drop resting on a polytetrafluoroethylene (PTFE) surface. When the microsphere touches the liquid surface, the meniscus rises onto it because of capillary forces. Although the microsphere volume is 6 orders of magnitude smaller than the drop, it excites the normal resonance modes of the liquid interface. The sphere is pinned at the interface, whose small (<100 nm) oscillations are readily measured with AFM. Resonance oscillation frequencies were measured for drop volumes between 5 and 200 µL. The results for the two lowest normal modes are quantitatively consistent with continuum calculations for the natural frequency of hemispherical drops with no adjustable parameters. The method may enable sensitive measurements of volume, surface tension, and viscosity of small drops.


Assuntos
Microscopia de Força Atômica/métodos , Politetrafluoretileno/química , Termodinâmica , Interações Hidrofóbicas e Hidrofílicas , Tamanho da Partícula , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...