Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cytogenet Genome Res ; 124(2): 147-50, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19420927

RESUMO

Marsupials, which diverged from eutherian mammals 150 million years ago (MYA), occupy a phylogenetic position that is very valuable in genome comparisons of mammal and other vertebrate species. Within the marsupials, the Australian and American clades (represented by the tammar wallaby Macropus eugenii, and the opossum Monodelphis domestica) diverged about 70 MYA. G-banding and chromosome painting suggest that tammar wallaby chromosome 6q has homology to opossum chromosome 7q. We tested this conservation by physically mapping the tammar wallaby orthologs of opossum chromosome 7q genes. We isolated 28 tammar wallaby BAC clones that contained orthologs of 16 opossum chromosome 7q genes. We used fluorescence in situ hybridization (FISH) to show that they all mapped specifically to the tammar wallaby chromosome 6q in nearly the same order as their orthologs on opossum chromosome 7q. Thus this chromosome arm is genetically, as well as cytologically, conserved over the 55-80 million years that separate kangaroos and the opossum.


Assuntos
Cromossomos de Mamíferos/genética , Sequência Conservada , Marsupiais/genética , Animais , Masculino , Mapeamento Físico do Cromossomo
2.
Cytogenet Genome Res ; 127(2-4): 213-23, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-20299781

RESUMO

Tuatara, Sphenodon punctatus, is the last survivor of the distinctive reptilian order Rhynchocephalia and is a species of extraordinary zoological interest, yet only recently have genomic analyses been undertaken. The karyotype consists of 28 macrochromosomes and 8 microchromosomes. A Bacterial Artificial Chromosome (BAC) library constructed for this species has allowed the first characterization of the tuatara genome. Sequence analysis of 11 fully sequenced BAC clones (approximately 0.03% coverage) increased the estimate of genome wide GC composition to 47.8%, the highest reported for any vertebrate. Our physical mapping data demonstrate discrete accumulation of repetitive elements in large blocks on some chromosomes, particularly the microchromosomes. We suggest that the large size of the genome (5.0 pg/haploid) is due to the accumulation of repetitive sequences. The microchromosomes of tuatara are rich in repetitive sequences, and the observation of one animal that lacked a microchromosome pair suggests that at least this microchromosome is unnecessary for survival. We used BACs bearing orthologues of known genes to construct a low-coverage cytogenetic map containing 21 markers. We identified a region on chromosome 4 of tuatara that shares homology with 7 Mb of chicken chromosome 2, and therefore the orthologous region of the snake Z chromosome. We identified a region on tuatara chromosome 3 that is orthologous to the chicken Z, and a region on chromosome 9 orthologous to the mammalian X. Since the tuatara determines sex by temperature and has no sex chromosomes, this implies that different tuatara autosome regions are homologous with the sex chromosomes of mammals, birds and snakes. We have identified anchor BAC clones that can be used to reliably mark chromosomes 3-7, 10 and 13, some of which are difficult to distinguish based on morphology alone. Fluorescence in situ hybridization mapping of 18S rDNA confirms the presence of a single NOR located on the long arm of chromosome 7, as previously identified by silver staining. Further work to construct a dense physical map will lead to a better understanding of the dynamics of genome evolution and organization in this isolated species.


Assuntos
Mapeamento Cromossômico , Cromossomos/genética , Lagartos/genética , Animais , Composição de Bases/genética , Aberrações Cromossômicas , Genômica , Hibridização in Situ Fluorescente , Coloração pela Prata , Telômero/genética
3.
Cytogenet Genome Res ; 127(2-4): 249-60, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-20332599

RESUMO

Reptiles epitomize the variability of reproductive and sex determining modes and mechanisms among amniotes. These modes include gonochorism (separate sexes) and parthenogenesis, oviparity, viviparity, and ovoviviparity, genotypic sex determination (GSD) with male (XX/XY) and female (ZZ/ZW) heterogamety and temperature-dependent sex determination (TSD). Lizards (order Squamata, suborder Sauria) are particularly fascinating because the distribution of sex-determining mechanisms shows no clear phylogenetic segregation. This implies that there have been multiple transitions between TSD and GSD, and between XY and ZW sex chromosome systems. Approximately 1,000 species of lizards have been karyotyped and among those, fewer than 200 species have sex chromosomes, yet they display remarkable diversity in morphology and degree of degeneration. The high diversity of sex chromosomes as well as the presence of species with TSD, imply multiple and independent origins of sex chromosomes, and suggest that the mechanisms of sex determination are extremely labile in lizards. In this paper, we review the current state of knowledge of sex chromosomes in lizards and the distribution of sex determining mechanisms and sex chromosome forms within and among families. We establish for the first time an association between the occurrence of female heterogamety and TSD within lizard families, and propose mechanisms by which female heterogamety and TSD may have co-evolved. We suggest that lizard sex determination may be much more the result of an interplay between sex chromosomes and temperature than previously thought, such that the sex determination mode is influenced by the nature of heterogamety as well as temperature sensitivity and the stage of sex chromosome degeneration.


Assuntos
Evolução Molecular , Lagartos/genética , Reprodução/genética , Cromossomos Sexuais/genética , Processos de Determinação Sexual , Animais , Feminino , Cariotipagem , Masculino , Temperatura
4.
Genome Dyn ; 2: 111-122, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-18753774

RESUMO

Marsupials and monotremes are 'alternative mammals', independent experiments of mammalian evolution that diverged from placental mammals 180 and 210 million years ago (MYA), respectively. Marsupials (e.g. kangaroo, opossum) and monotremes (e.g. platypus) differ from placental mammals in many characteristics, particularly reproduction. With their early divergence from placentals, they fill the phylogenetic gap between the mammal-reptile divergence 310 MYA and the placental radiation 100 MYA. Their genomes are similar in size to those of placentals, but their chromosomes are quite distinctive. Marsupials have a few very large and very conserved chromosomes, while monotremes show a reptile-like size dichotomy and have a unique chain of ten sex chromosomes. Studies of gene arrangement in marsupials and monotremes have delivered many surprises that necessitate re-evaluation of the function and control of several genes in all mammals including humans, and provide new insights into the evolution of the mammalian genome, particularly the sex chromosomes. With the imminent sequencing of the genomes of two marsupials (the short-tailed grey Brazilian opossum and an Australian model kangaroo) and the platypus, much more detailed comparisons become possible. Even the first few analyses of marsupial and platypus sequences confirm the value of sequence comparisons for finding new genes and regulatory regions and exploring their function, as well as deducing how they evolved.


Assuntos
Marsupiais/genética , Animais , Mapeamento Cromossômico , Biologia Computacional , Evolução Molecular , Técnicas Genéticas , Genoma , Genômica , Humanos , Modelos Biológicos , Modelos Genéticos , Filogenia , Análise de Sequência de DNA
5.
Cytogenet Genome Res ; 111(2): 110-7, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-16103651

RESUMO

Major histocompatibility complex (MHC) molecules are central to development and regulation of the immune system in all jawed vertebrates. MHC class III cytokine genes from the tumor necrosis factor core family, including tumor necrosis factor (TNF) and lymphotoxin alpha and beta (LTA, LTB), are well studied in human and mouse. Orthologues have been identified in several other eutherian species and the cDNA sequences have been reported for a model marsupial, the tammar wallaby. Comparative genomics can help to determine gene function, to understand the evolution of a gene or gene family, and to identify potential regulatory regions. We therefore cloned the genomic region containing the tammar LTB, TNF, and LTA orthologues by "genome walking", using primers designed from known tammar sequences and regions conserved in other species. We isolated two tammar BAC clones containing all three genes. These tammar genes show similar intergenic distances and the same transcriptional orientation as in human and mouse. Gene structures and sequences are also very conserved. By comparing the tammar, human and mouse genomic sequences we were able to identify candidate regulatory regions for these genes in mammals. Full length sequencing of BACs containing the three genes has been partially completed, and reveals the presence of a number of other tammar MHC III orthologues in this region.


Assuntos
Macropodidae/genética , Complexo Principal de Histocompatibilidade , Animais , Sequência de Bases , Mapeamento Cromossômico , Cromossomos Artificiais Bacterianos , Cromossomos de Mamíferos , Clonagem Molecular , Sequência Conservada , Primers do DNA , Genoma , Humanos , Macropodidae/imunologia , Camundongos , Dados de Sequência Molecular , Reação em Cadeia da Polimerase/métodos , Alinhamento de Sequência , Homologia de Sequência do Ácido Nucleico , Transcrição Gênica , Fator de Necrose Tumoral alfa/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...