Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 125
Filtrar
1.
Biospektrum (Heidelb) ; 29(1): 56-57, 2023.
Artigo em Alemão | MEDLINE | ID: mdl-36845578
2.
Exp Eye Res ; 226: 109346, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36529279

RESUMO

The posttranscriptional modifications (PTM) of the Histone H3 family play an important role in ocular system differentiation. However, there has been no study on the nature of specific Histone H3 subtype carrying these modifications. Fortuitously, we had previously identified a dominant small-eye mutant Aey69 mouse with a mutation in the H3.2 encoding Hist2h3c1 gene (Vetrivel et al., 2019). In continuation, in the present study, the role of Histone H3.2 with relation to the microphtalmic Aey69 has been elaborated. Foremost, a transgenic mouse line expressing the fusion protein H3.2-GFP was generated using Crispr/Cas9. The approach was intended to confer a unique tag to the Hist2h3c1 gene which is similar in sequence and encoded protein structure to other histones. The GFP tag was then used for ChIP Seq analysis of the genes regulated by H3.2. The approach revealed ocular specific H3.2 targets including Ephrin family genes. Altered enrichment of H3.2 was found in the mutant Aey69 mouse, specifically around the ligand Efna5 and the receptor Ephb2. The effect of this altered enrichment on Ephrin signaling was further analysed by QPCR and immunohistochemistry. This study identifies Hist2h3c1 encoded H3.2 as an important epigenetic player in ocular development. By binding to specific regions of ocular developmental factors Histone H3.2 facilitates the function of these genes for successful early ocular development.


Assuntos
Histonas , Animais , Camundongos , Histonas/genética , Imuno-Histoquímica , Camundongos Transgênicos , Mutação
3.
Nat Commun ; 13(1): 6830, 2022 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-36369285

RESUMO

Current concepts regarding the biology of aging are primarily based on studies aimed at identifying factors regulating lifespan. However, lifespan as a sole proxy measure for aging can be of limited value because it may be restricted by specific pathologies. Here, we employ large-scale phenotyping to analyze hundreds of markers in aging male C57BL/6J mice. For each phenotype, we establish lifetime profiles to determine when age-dependent change is first detectable relative to the young adult baseline. We examine key lifespan regulators (putative anti-aging interventions; PAAIs) for a possible countering of aging. Importantly, unlike most previous studies, we include in our study design young treated groups of animals, subjected to PAAIs prior to the onset of detectable age-dependent phenotypic change. Many PAAI effects influence phenotypes long before the onset of detectable age-dependent change, but, importantly, do not alter the rate of phenotypic change. Hence, these PAAIs have limited effects on aging.


Assuntos
Envelhecimento , Longevidade , Camundongos , Animais , Masculino , Longevidade/genética , Camundongos Endogâmicos C57BL , Envelhecimento/fisiologia , Fenótipo
4.
Cell Death Discov ; 8(1): 387, 2022 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-36115851

RESUMO

Retinitis pigmentosa is a group of progressive inherited retinal dystrophies that may present clinically as part of a syndromic entity or as an isolated (nonsyndromic) manifestation. In an Indian family suffering from retinitis pigmentosa, we identified a missense variation in CNGA1 affecting the cyclic nucleotide binding domain (CNBD) and characterized a mouse model developed with mutated CNBD. A gene panel analysis comprising 105 known RP genes was used to analyze a family with autosomal-recessive retinitis pigmentosa (arRP) and revealed that CNGA1 was affected. From sperm samples of ENU mutagenesis derived F1 mice, we re-derived a mutant with a Cnga1 mutation. Homozygous mutant mice, developing retinal degeneration, were examined for morphological and functional consequences of the mutation. In the family, we identified a rare CNGA1 variant (NM_001379270.1) c.1525 G > A; (p.Gly509Arg), which co-segregated among the affected family members. Homozygous Cnga1 mice harboring a (ENSMUST00000087213.12) c.1526 A > G (p.Tyr509Cys) mutation showed progressive degeneration in the retinal photoreceptors from 8 weeks on. This study supports a role for CNGA1 as a disease gene for arRP and provides new insights on the pathobiology of cGMP-binding domain mutations in CNGA1-RP.

5.
Biospektrum (Heidelb) ; 28(4): 406-407, 2022.
Artigo em Alemão | MEDLINE | ID: mdl-35698576
6.
Biospektrum (Heidelb) ; 28(2): 176-177, 2022.
Artigo em Alemão | MEDLINE | ID: mdl-35369112
7.
Radiat Res ; 197(1): 67-77, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34237145

RESUMO

We have shown previously that a single radiation event (0.063, 0.125 or 0.5 Gy, 0.063 Gy/min) in adult mice (age 10 weeks) can have delayed dose-dependent effects on locomotor behavior 18 months postirradiation. The highest dose (0.5 Gy) reduced, whereas the lowest dose (0.063 Gy) increased locomotor activity at older age independent of sex or genotype. In the current study we investigated whether higher doses administered at a higher dose rate (0.5, 1 or 2 Gy, 0.3 Gy/min) at the same age (10 weeks) cause stronger or earlier effects on a range of behaviors, including locomotion, anxiety, sensorimotor and cognitive behavior. There were clear dose-dependent effects on spontaneous locomotor and exploratory activity, anxiety-related behavior, body weight and affiliative social behavior independent of sex or genotype of wild-type and Ercc2S737P heterozygous mice on a mixed C57BL/6JG and C3HeB/FeJ background. In addition, smaller genotype- and dose-dependent radiation effects on working memory were evident in males, but not in females. The strongest dose-dependent radiation effects were present 4 months postirradiation, but only effects on affiliative social behaviors persisted until 12 months postirradiation. The observed radiation-induced behavioral changes were not related to alterations in the eye lens, as 4 months postirradiation anterior and posterior parts of the lens were still normal. Overall, we did not find any sensitizing effect of the mutation towards radiation effects in vivo.


Assuntos
Comportamento Animal/efeitos da radiação , Animais , Radioisótopos de Cobalto/química , Relação Dose-Resposta à Radiação , Feminino , Raios gama , Genótipo , Cristalino , Masculino , Memória de Curto Prazo , Camundongos , Camundongos Endogâmicos , Exposição Ocupacional , Doses de Radiação , Exposição à Radiação , Fatores Sexuais , Comportamento Social , Fatores de Tempo
8.
Radiat Res ; 197(1): 7-21, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33631790

RESUMO

Ionizing radiation is widely known to induce various kinds of lens cataracts, of which posterior subcapsular cataracts (PSCs) have the highest prevalence. Despite some studies regarding the epidemiology and biology of radiation-induced PSCs, the mechanism underscoring the formation of this type of lesions and their dose dependency remain uncertain. Within the current study, our team investigated the in vivo characteristics of PSCs in B6C3F1 mice (F1-hybrids of BL6 × C3H) that received 0.5-2 Gy γ-ray irradiation after postnatal day 70. For purposes of assessing lenticular damages, spectral domain optical coherence tomography was utilized, and the visual acuity of the mice was measured to analyze their levels of visual impairment, and histological sections were then prepared in to characterize in vivo phenotypes. Three varying in vivo phenotype anterior and posterior lesions were thus revealed and correlated with the applied doses to understand their marginal influence on the visual acuity of the studied mice. Histological data indicated no significantly increased odds ratios for PSCs below a dose of 1 Gy at the end of the observation time. Furthermore, our team demonstrated that when the frequencies of the posterior and anterior lesions were calculated at early time points, their responses were in accordance with a deterministic model, whereas at later time points, their responses were better described via a stochastic model. The current study will aid in honing the current understanding of radiation-induced cataract formation and contributes greatly to addressing the fundamental questions of lens dose response within the field of radiation biology.


Assuntos
Catarata/etiologia , Cristalino/efeitos da radiação , Animais , Feminino , Genótipo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C3H , Mutação , Radiação Ionizante , Tomografia de Coerência Óptica , Acuidade Visual
9.
Biospektrum (Heidelb) ; 27(5): 516-517, 2021.
Artigo em Alemão | MEDLINE | ID: mdl-34511736
10.
Biospektrum (Heidelb) ; 27(4): 406-407, 2021.
Artigo em Alemão | MEDLINE | ID: mdl-34219985
13.
Biospektrum (Heidelb) ; 27(3): 284-285, 2021.
Artigo em Alemão | MEDLINE | ID: mdl-33994675
14.
Nat Struct Mol Biol ; 28(2): 143-151, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33432246

RESUMO

The prevalent model for cataract formation in the eye lens posits that damaged crystallin proteins form light-scattering aggregates. The α-crystallins are thought to counteract this process as chaperones by sequestering misfolded crystallin proteins. In this scenario, chaperone pool depletion would result in lens opacification. Here we analyze lenses from different mouse strains that develop early-onset cataract due to point mutations in α-, ß-, or γ-crystallin proteins. We find that these mutant crystallins are unstable in vitro; in the lens, their levels are substantially reduced, and they do not accumulate in the water-insoluble fraction. Instead, all the other crystallin proteins, including the α-crystallins, are found to precipitate. The changes in protein composition and spatial organization of the crystallins observed in the mutant lenses suggest that the imbalance in the lenticular proteome and altered crystallin interactions are the bases for cataract formation, rather than the aggregation propensity of the mutant crystallins.


Assuntos
Catarata/metabolismo , Cristalinas/metabolismo , Cristalino , Agregação Patológica de Proteínas , Animais , Cristalino/metabolismo , Cristalino/patologia , Camundongos , Chaperonas Moleculares/metabolismo , Proteoma/metabolismo
15.
Int J Radiat Biol ; 97(4): 529-540, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33464160

RESUMO

PURPOSE: The long-term effect of low and moderate doses of ionizing radiation on the lens is still a matter of debate and needs to be evaluated in more detail. MATERIAL AND METHODS: We conducted a detailed histological analysis of eyes from B6C3F1 mice cohorts after acute gamma irradiation (60Co source; 0.063 Gy/min) at young adult age of 10 weeks with doses of 0.063, 0.125, and 0.5 Gy. Sham irradiated (0 Gy) mice were used as controls. To test for genetic susceptibility heterozygous Ercc2 mutant mice were used and compared to wild-type mice of the same strain background. Mice of both sexes were included in all cohorts. Eyes were collected 4 h, 12, 18 and 24 months after irradiation. For a better understanding of the underlying mechanisms, metabolomics analyses were performed in lenses and plasma samples of the same mouse cohorts at 4 and 12 h as well as 12, 18 and 24 months after irradiation. For this purpose, a targeted analysis was chosen. RESULTS: This analysis revealed histological changes particularly in the posterior part of the lens that rarely can be observed by using Scheimpflug imaging, as we reported previously. We detected a significant increase of posterior subcapsular cataracts (PSCs) 18 and 24 months after irradiation with 0.5 Gy (odds ratio 9.3; 95% confidence interval 2.1-41.3) independent of sex and genotype. Doses below 0.5 Gy (i.e. 0.063 and 0.125 Gy) did not significantly increase the frequency of PSCs at any time point. In lenses, we observed a clear effect of sex and aging but not of irradiation or genotype. While metabolomics analyses of plasma from the same mice showed only a sex effect. CONCLUSIONS: This article demonstrates a significant radiation-induced increase in the incidence of PSCs, which could not be identified using Scheimpflug imaging as the only diagnostic tool.


Assuntos
Catarata/etiologia , Lesões por Radiação/etiologia , Animais , Catarata/genética , Relação Dose-Resposta à Radiação , Feminino , Heterozigoto , Cristalino/efeitos da radiação , Masculino , Camundongos , Lesões por Radiação/genética
16.
Exp Eye Res ; 204: 108432, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33454312

RESUMO

Ionising radiation interacts with lenses and retinae differently. In human lenses, posterior subcapsular cataracts are the predominant observation, whereas retinae of adults are comparably resistant to even relatively high doses. In this study, we demonstrate the effects of 2 Gy of low linear energy transfer ionising radiation on eyes of B6C3F1 mice aged postnatal day 2. Optical coherence tomography and Scheimpflug imaging were utilised for the first time to monitor murine lenses and retinae in vivo. The visual acuity of the mice was determined and histological analysis was conducted. Our results demonstrated that visual acuity was reduced by as much as 50 % approximately 9 months after irradiation in irradiated mice. Vision impairment was caused by retinal atrophy and inner cortical cataracts. These results help to further our understanding of the risk of ionising radiation for human foeti (∼ 8 mo), which follow the same eye development stages as neonatal mice.


Assuntos
Catarata/etiologia , Cristalino/efeitos da radiação , Lesões Experimentais por Radiação/etiologia , Radiação Ionizante , Retina/efeitos da radiação , Doenças Retinianas/etiologia , Transtornos da Visão/etiologia , Animais , Animais Recém-Nascidos , Calbindina 2/metabolismo , Catarata/diagnóstico por imagem , Catarata/metabolismo , Proteína Glial Fibrilar Ácida/metabolismo , Imuno-Histoquímica , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Proteína Quinase C-alfa/metabolismo , Doses de Radiação , Lesões Experimentais por Radiação/diagnóstico por imagem , Lesões Experimentais por Radiação/metabolismo , Doenças Retinianas/diagnóstico por imagem , Doenças Retinianas/metabolismo , Rodopsina/metabolismo , Tomografia de Coerência Óptica , Transtornos da Visão/diagnóstico por imagem , Transtornos da Visão/metabolismo , Acuidade Visual/fisiologia
17.
Int J Radiat Biol ; 97(2): 156-169, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33264576

RESUMO

PURPOSE: The increasing use of low-dose ionizing radiation in medicine requires a systematic study of its long-term effects on the brain, behaviour and its possible association with neurodegenerative disease vulnerability. Therefore, we analysed the long-term effects of a single low-dose irradiation exposure at 10 weeks of age compared to medium and higher doses on locomotor, emotion-related and sensorimotor behaviour in mice as well as on hippocampal glial cell populations. MATERIALS AND METHODS: We determined the influence of radiation dose (0, 0.063, 0.125 or 0.5 Gy), time post-irradiation (4, 12 and 18 months p.i.), sex and genotype (wild type versus mice with Ercc2 DNA repair gene point mutation) on behaviour. RESULTS: The high dose (0.5 Gy) had early-onset adverse effects at 4 months p.i. on sensorimotor recruitment and late-onset negative locomotor effects at 12 and 18 months p.i. Notably, the low dose (0.063 Gy) produced no early effects but subtle late-onset (18 months) protective effects on sensorimotor recruitment and exploratory behaviour. Quantification and morphological characterization of the microglial and the astrocytic cells of the dentate gyrus 24 months p.i. indicated heightened immune activity after high dose irradiation (0.125 and 0.5 Gy) while conversely, low dose (0.063 Gy) induced more neuroprotective features. CONCLUSION: This is one of the first studies demonstrating such long-term and late-onset effects on brain and behaviour after a single radiation event in adulthood.


Assuntos
Comportamento Animal/efeitos da radiação , Neuroglia/efeitos da radiação , Animais , Relação Dose-Resposta à Radiação , Feminino , Hipocampo/efeitos da radiação , Masculino , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Atividade Motora/efeitos da radiação , Irradiação Corporal Total , Proteína Grupo D do Xeroderma Pigmentoso/genética
18.
Int J Mol Sci ; 21(24)2020 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-33339270

RESUMO

Congenital cataracts are the prime cause for irreversible blindness in children. The global incidence of congenital cataract is 2.2-13.6 per 10,000 births, with the highest prevalence in Asia. Nearly half of the congenital cataracts are of familial nature, with a predominant autosomal dominant pattern of inheritance. Over 38 of the 45 mapped loci for isolated congenital or infantile cataracts have been associated with a mutation in a specific gene. The clinical and genetic heterogeneity of congenital cataracts makes the molecular diagnosis a bit of a complicated task. Hence, whole exome sequencing (WES) was utilized to concurrently screen all known cataract genes and to examine novel candidate factors for a disease-causing mutation in probands from 11 pedigrees affected with familial congenital cataracts. Analysis of the WES data for known cataract genes identified causative mutations in six pedigrees (55%) in PAX6, FYCO1 (two variants), EPHA2, P3H2,TDRD7 and an additional likely causative mutation in a novel gene NCOA6, which represents the first dominant mutation in this gene. This study identifies a novel cataract gene not yet linked to human disease. NCOA6 is a transcriptional coactivator that interacts with nuclear hormone receptors to enhance their transcriptional activator function.


Assuntos
Alelos , Catarata/genética , Coativadores de Receptor Nuclear/genética , Catarata/patologia , Efrina-A2/genética , Feminino , Testes Genéticos , Humanos , Masculino , Proteínas Associadas aos Microtúbulos/genética , Mutação , Fator de Transcrição PAX6/genética , Linhagem , Pró-Colágeno-Prolina Dioxigenase/genética , Receptor EphA2 , Ribonucleoproteínas/genética , Sequenciamento Completo do Genoma
19.
Ophthalmic Genet ; 41(6): 556-562, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32811259

RESUMO

PURPOSE: To identify the mutation causing an autosomal dominant congenital nuclear cataract in a south Indian family by whole exome sequencing and to characterize further phenotypically the same in a zebra fish model. METHODS: A six-generation family (DKEC1) with several affected members registered at the Regional Institute of Ophthalmology (RIO), Chennai was documented to have congenital nuclear cataract. Detailed clinical history and blood samples were collected from all available family members. Genomic DNA of the proband was subjected to whole exome sequencing. Sequence variations suggestive of putative mutations were further confirmed by bidirectional sequencing and restriction site analysis. Functional analysis of the mutant CRYGC E128* in zebrafish embryos was done to dissect out the pathogenicity. RESULTS: A unique variation viz., c.382 G > T in the coding region of the CRYGC gene, resulting in a premature stop codon at position 128 (E128*) was documented in the affected family members. The same was absent in unaffected family members and in 120 unrelated population controls checked. Bioinformatic tools predicted that the mutation might cause a deleterious effect on protein structure and function. Molecular function analysis of this novel mutation (p. E128*, CRYGC) in the zebrafish indicated this mutation to impair lens transparency. CONCLUSION: This study identified a novel CRYGC mutation, E128* to cause autosomal dominant congenital nuclear cataract in a large south Indian family. Our study provides a new insight onto how the mutation might affect the γC-crystallin structure and function besides emphasizing the need for genetic diagnosis toward vision restoration.


Assuntos
Povo Asiático/genética , Catarata/congênito , Mutação , Fenótipo , gama-Cristalinas/genética , Sequência de Aminoácidos , Sequência de Bases , Catarata/genética , Catarata/patologia , Pré-Escolar , Feminino , Humanos , Masculino , Linhagem
20.
Transl Psychiatry ; 10(1): 113, 2020 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-32317624

RESUMO

ßB2-crystallin (gene symbol: Crybb2/CRYBB2) was first described as a structural protein of the ocular lens before it was detected in various brain regions of the mouse, including the hippocampus and the cerebral cortex. Mutations in the mouse Crybb2 gene lead to alterations of sensorimotor gating measured as prepulse inhibition (PPI) and reduced hippocampal size, combined with an altered number of parvalbumin-positive GABAergic interneurons. Decreased PPI and alterations of parvalbumin-positive interneurons are also endophenotypes that typically occur in schizophrenia. To verify the results found in mice, we genotyped 27 single nucleotide polymorphisms (SNPs) within the CRYBB2 gene and its flanking regions and investigated different schizophrenia typical endophenotypes in a sample of 510 schizophrenia patients and 1322 healthy controls. In the case-control study, no association with schizophrenia was found. However, 3 of the 4 investigated haplotype blocks indicated a decreased CRYBB2 mRNA expression. Two of these blocks were associated with poorer antisaccade task performance and altered working memory-linked functional magnetic resonance imaging signals. For the two haplotypes associated with antisaccade performance, suggestive evidence was found with visual memory and in addition, haplotype block 4 showed a nominally significant association with reduced sensorimotor gating, measured as P50 ratio. These results were not schizophrenia-specific, but could be detected in a combined sample of patients and healthy controls. This is the first study to demonstrate the importance of ßB2-crystallin for antisaccade performance and memory function in humans and therefore provides implications for ßB2-crystallin function in the human brain.


Assuntos
Endofenótipos , Filtro Sensorial , Estudos de Casos e Controles , Humanos , Mutação , Inibição Pré-Pulso , Cadeia B de beta-Cristalina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...