Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Carbon Trends ; 11: 1-12, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37234684

RESUMO

A coconut shell (AC1230CX) and a bituminous coal based (F400) granular activated carbon (GAC) were ground with mortar and pestle (MP), a blender, and a bench-scale ball milling unit (BMU). Blender was the most time-efficient for particle size reduction. Four size fractions ranging from 20 × 40 to 200 × 325 were characterized along with the bulk GACs. Compared to bulk GACs, F400 blender and BMU 20 × 40 fractions decreased in specific surface area (SSA, -23% and -31%, respectively) while smaller variations (-14% to 5%) occurred randomly for AC1230CX ground fractions. For F400, the blender and BMU size fraction dependencies were attributed to the combination of (i) radial trends in the F400 particle properties and (ii) importance of shear (outer layer removal) versus shock (particle fracturing) size reduction mechanisms. Compared to bulk GACs, surface oxygen content (At%-O1s) increased up to 34% for the F400 blender and BMU 20 × 40 fractions, whereas all AC1230CX ground fractions, except for the blender 100 × 200 and BMU 60 × 100 and 100 × 200 fractions, showed 25-29% consistent increases. The At%-O1s gain was attributed to (i) radial trends in F400 properties and (ii) oxidization during grinding, both of which supported the shear mechanism of mechanical grinding. Relatively small to insignificant changes in point of zero charge (pHPZC) and crystalline structure showed similar trends with the changes in SSA and At%-O1s. The study findings provide guidance for informed selection of grinding methods based on GAC type and target particle sizes to improve the representativeness of adsorption studies conducted with ground GAC, such as rapid small-scale column tests. When GACs have radial trends in their properties and when the target size fraction only includes larger particle sizes, manual grinding is recommended.

2.
ACS ES T Water ; 3(2): 576-587, 2023 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-37035423

RESUMO

When implementing anion exchange (AEX) for per- and polyfluoroalkyl substances treatment, temporal drinking water quality changes from concurrent inorganic anion (IA) removal can create unintended consequences (e.g., corrosion control impacts). To understand potential effects, four drinking water-relevant IAs (bicarbonate, chloride, sulfate, and nitrate) and three gel-type, strong-base AEX resins were evaluated. Batch binary isotherm experiments provided estimates of IA selectivity with respect to chloride ( K x ∕ C ) for IA/resin combinations where bicarbonate < sulfate ≤ nitrate at studied conditions. A multi-IA batch experiment demonstrated that binary isotherm-determined K x ∕ C values predicted competitive behavior. Subsequent column experiments with and without natural organic matter (NOM) allowed for the validation of a new ion exchange column model (IEX-CM; https://github.com/USEPA/Water_Treatment_Models). IA breakthrough was well-simulated using binary isotherm-determined K x ∕ C values and was minimally impacted by NOM. Initial AEX effluent water quality changes with corrosion implications included increased chloride and decreased sulfate and bicarbonate concentrations, resulting in elevated chloride-to-sulfate mass ratios (CSMRs) and Larson ratios (LRs) and depressed pH until the complete breakthrough of the relevant IA(s). IEX-CM utility was further illustrated by simulating the treatment of low-IA source water and a change in the source water to understand the resulting duration of changes in IAs and water quality parameters.

3.
ACS ES T Water ; 3(12): 3967-3979, 2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38304618

RESUMO

Selectivity with respect to chloride (KPFAS∕C) was determined for nine drinking water relevant perfluoroalkyl and polyfluoroalkyl substances (PFAS): perfluoro-2-propoxypropanoic acid (GenX), five perfluoroalkyl carboxylic acids (PFCAs), and three perfluoroalkyl sulfonic acids (PFSAs). Three single-use strong base anion exchange gel resins were investigated, targeting drinking water relevant equilibrium PFAS liquid concentrations (≤500 ng/L). Except for the longest carbon chain PFCA (perfluorodecanoic acid) and PFSA (perfluorooctanesulfonic acid) studied, PFAS followed traditional ion exchange theory (law of mass action), including increasing equilibrium PFAS liquid concentrations with increasing equilibrium chloride liquid concentrations. Overall, KPFAS∕C values were (i) similar among resins for a given PFAS, (ii) 1-5 orders of magnitude greater than the selectivity of inorganic anions (e.g., nitrate) previously studied, (iii) 2 orders of magnitude greater for the same carbon chain length PFSA versus PFCA, (iv) found to proportionally increase with carbon chain length for both PFSAs and PFCAs, and (v) similar for GenX and perfluorohexanoic acid (six-carbon PFCA). A multisolute competition experiment demonstrated binary isotherm-determined KPFAS∕C values could be applied to simulate a multisolute system, extending work previously done with only inorganic anions to PFAS. Ultimately, estimated KPFAS∕C values allow future extension and validation of an open-source anion exchange column model to PFAS.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...