Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochemistry ; 56(32): 4219-4234, 2017 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-28656748

RESUMO

Ligand binding is one of the most fundamental properties of proteins. Ligand functions fall into three basic types: substrates, regulatory molecules, and cofactors essential to protein stability, reactivity, or enzyme-substrate complex formation. The regulation of potassium ion movement in bacteria is predominantly under the control of regulatory ligands that gate the relevant channels and transporters, which possess subunits or domains that contain Rossmann folds (RFs). Here we demonstrate that adenosine monophosphate (AMP) is bound to both RFs of the dimeric bacterial Kef potassium efflux system (Kef), where it plays a structural role. We conclude that AMP binds with high affinity, ensuring that the site is fully occupied at all times in the cell. Loss of the ability to bind AMP, we demonstrate, causes protein, and likely dimer, instability and consequent loss of function. Kef system function is regulated via the reversible binding of comparatively low-affinity glutathione-based ligands at the interface between the dimer subunits. We propose this interfacial binding site is itself stabilized, at least in part, by AMP binding.


Assuntos
Monofosfato de Adenosina/química , Antiportadores de Potássio-Hidrogênio/química , Dobramento de Proteína , Multimerização Proteica , Shewanella/química , Monofosfato de Adenosina/genética , Monofosfato de Adenosina/metabolismo , Antiportadores de Potássio-Hidrogênio/genética , Antiportadores de Potássio-Hidrogênio/metabolismo , Ligação Proteica , Domínios Proteicos , Estabilidade Proteica , Estrutura Quaternária de Proteína , Shewanella/genética , Shewanella/metabolismo
2.
Biochemistry ; 53(12): 1982-92, 2014 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-24601535

RESUMO

The potassium efflux system, Kef, protects bacteria against the detrimental effects of electrophilic compounds via acidification of the cytoplasm. Kef is inhibited by glutathione (GSH) but activated by glutathione-S-conjugates (GS-X) formed in the presence of electrophiles. GSH and GS-X bind to overlapping sites on Kef, which are located in a cytosolic regulatory domain. The central paradox of this activation mechanism is that GSH is abundant in cells (at concentrations of ∼10-20 mM), and thus, activating ligands must possess a high differential over GSH in their affinity for Kef. To investigate the structural requirements for binding of a ligand to Kef, a novel fluorescent reporter ligand, S-{[5-(dimethylamino)naphthalen-1-yl]sulfonylaminopropyl} glutathione (DNGSH), was synthesized. By competition assays using DNGSH, complemented by direct binding assays and thermal shift measurements, we show that the well-characterized Kef activator, N-ethylsuccinimido-S-glutathione, has a 10-20-fold higher affinity for Kef than GSH. In contrast, another native ligand that is a poor activator, S-lactoylglutathione, exhibits a similar Kef affinity to GSH. Synthetic ligands were synthesized to contain either rigid or flexible structures and investigated as ligands for Kef. Compounds with rigid structures and high affinity activated Kef. In contrast, flexible ligands with similar binding affinities did not activate Kef. These data provide insight into the structural requirements for Kef gating, paving the way for the development of a screen for potential therapeutic lead compounds targeting the Kef system.


Assuntos
Proteínas de Escherichia coli/química , Glutationa/análogos & derivados , Antiportadores de Potássio-Hidrogênio/química , Potássio/química , Succinimidas/química , Transporte Biológico Ativo/fisiologia , Proteínas de Escherichia coli/metabolismo , Glutationa/química , Glutationa/metabolismo , Ativação do Canal Iônico/fisiologia , Ligantes , Potássio/metabolismo , Antiportadores de Potássio-Hidrogênio/metabolismo , Ligação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Shewanella/química , Shewanella/metabolismo , Succinimidas/metabolismo
3.
ACS Chem Biol ; 8(7): 1451-9, 2013 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-23597309

RESUMO

The increased resistance of hypoxic cells to all forms of cancer therapy presents a major barrier to the successful treatment of most solid tumors. Inhibition of the essential kinase Checkpoint kinase 1 (Chk1) has been described as a promising cancer therapy for tumors with high levels of hypoxia-induced replication stress. However, as inhibition of Chk1 affects normal replication and induces DNA damage, these agents also have the potential to induce genomic instability and contribute to tumorigenesis. To overcome this problem, we have developed a bioreductive prodrug, which functions as a Chk1/Aurora A inhibitor specifically in hypoxic conditions. To achieve this activity, a key functionality on the Chk1 inhibitor (CH-01) is masked by a bioreductive group, rendering the compound inactive as a Chk1/Aurora A inhibitor. Reduction of the bioreductive group nitro moiety, under hypoxic conditions, reveals an electron-donating substituent that leads to fragmentation of the molecule, affording the active inhibitor. Most importantly, we show a significant loss of viability in cancer cell lines exposed to hypoxia in the presence of CH-01. This novel approach targets the most aggressive and therapy-resistant tumor fraction while protecting normal tissue from therapy-induced genomic instability.


Assuntos
Aurora Quinase A/metabolismo , Sistemas de Liberação de Medicamentos , Furanos/farmacologia , Pró-Fármacos/farmacologia , Proteínas Quinases/metabolismo , Pirimidinas/farmacologia , Hipóxia Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Quinase 1 do Ponto de Checagem , Cromatografia Líquida de Alta Pressão , Ativação Enzimática/efeitos dos fármacos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Imunofluorescência , Furanos/química , Humanos , Estrutura Molecular , Oxirredução/efeitos dos fármacos , Pró-Fármacos/química , Pirimidinas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...