Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
iScience ; 26(3): 106175, 2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-36788793

RESUMO

Despite much concerted effort to better understand severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) viral infection, relatively little is known about the dynamics of early viral entry and infection in the airway. Here we analyzed a single-cell RNA sequencing dataset of early SARS-CoV-2 infection in a humanized in vitro model, to elucidate key mechanisms by which the virus triggers a cell-systems-level response in the bronchial epithelium. We find that SARS-CoV-2 virus preferentially enters the tissue via ciliated cell precursors, giving rise to a population of infected mature ciliated cells, which signal to basal cells, inducing further rapid differentiation. This feedforward loop of infection is mitigated by further cell-cell communication, before interferon signaling begins at three days post-infection. These findings suggest hijacking by the virus of potentially beneficial tissue repair mechanisms, possibly exacerbating the outcome. This work both elucidates the interplay between barrier tissues and viral infections and may suggest alternative therapeutic approaches targeting non-immune response mechanisms.

2.
Sci Adv ; 5(12): eaaw3851, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31840053

RESUMO

Efforts to decipher chronic lung disease and to reconstitute functional lung tissue through regenerative medicine have been hampered by an incomplete understanding of cell-cell interactions governing tissue homeostasis. Because the structure of mammalian lungs is highly conserved at the histologic level, we hypothesized that there are evolutionarily conserved homeostatic mechanisms that keep the fine architecture of the lung in balance. We have leveraged single-cell RNA sequencing techniques to identify conserved patterns of cell-cell cross-talk in adult mammalian lungs, analyzing mouse, rat, pig, and human pulmonary tissues. Specific stereotyped functional roles for each cell type in the distal lung are observed, with alveolar type I cells having a major role in the regulation of tissue homeostasis. This paper provides a systems-level portrait of signaling between alveolar cell populations. These methods may be applicable to other organs, providing a roadmap for identifying key pathways governing pathophysiology and informing regenerative efforts.


Assuntos
Conectoma , Pulmão/citologia , Mamíferos/metabolismo , Análise de Célula Única , Animais , Linhagem Celular , Espaço Extracelular/metabolismo , Genes , Homeostase , Humanos , Ligantes , Alvéolos Pulmonares/metabolismo , Receptores de Superfície Celular/metabolismo , Semaforinas/metabolismo , Transdução de Sinais , Especificidade da Espécie , Fator A de Crescimento do Endotélio Vascular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...