Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; 35(40): e2304074, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37395476

RESUMO

Photoluminescence blinking behavior from single quantum dots under steady illumination is an important but controversial topic. Its occurrence has impeded the use of single quantum dots in bioimaging. Different mechanisms have been proposed to account for it, although controversial, the most important of which is the non-radiative Auger recombination mechanism whereby photocharging of quantum dots can lead to the blinking phenomenon. Here, the singly charged trion, which maintains photon emission, including radiative recombination and non-radiative Auger recombination, leads to fluorescence non-blinking which is observed in photocharged single graphene quantum dots (GQDs). This phenomenon can be explained in terms of different energy levels in the GQDs, caused by various oxygen-containing functional groups in the single GQDs. The suppressed blinking is due to the filling of trap sites owing to a Coulomb blockade. These results provide a profound understanding of the special optical properties of GQDs, affording a reference for further in-depth research.

2.
N Z Vet J ; 71(4): 186-193, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36938644

RESUMO

AIMS: To investigate the pathogenesis of a disease in takahe (Porphyrio hochstetteri) with intracytoplasmic inclusion bodies in lower motor neurons. METHODS: Four birds aged between 5 and 12 years, from three different wildlife sanctuaries in New Zealand were examined. Of these, only one had signs of spinal dysfunction in the form of paresis. Stained paraffin sections of tissues were examined by light microscopy and immunostained sections of the ventral horn of the spinal cord by confocal microscopy. Epoxy resin sections of the spinal cord from the bird with spinal dysfunction were examined by electron microscopy. RESULTS: Two types of inclusion bodies were noted, but only in motor neurons of the ventral spinal cord and brain stem. These were large globoid eosinophilic bodies up to 5 µm in diameter, and yellow/brown granular inclusions mostly at the pole of the cell. The globoid bodies stained with Luxol fast blue but not with periodic acid Schiff (PAS), or Sudan black. The granular inclusions stained with Luxol fast blue, PAS and Sudan black. Both bodies were slightly autofluorescent. On electron microscopy the globoid bodies had an even electron-dense texture and were bound by a membrane. Beneath the membrane were large numbers of small intraluminal vesicles. The smaller granular bodies were more heterogeneous, irregularly rounded and membrane-bound accumulations of granular electron-dense material, often with electron-lucent vacuoles. Others were more vesicular but contained varying amounts of electron-dense material. The large globoid bodies did not immunostain for lysosomal markers lysosomal associated protein 1 (LAMP1) or cathepsin D, so were not lysosomal. The small granular bodies stained for cathepsin D by a chromogenic method.A kindred matrix analysis showed two cases to be as closely related as first cousins, and another case was almost as closely related to one of them, but the fourth bird was unrelated to any other. CONCLUSIONS: It was concluded that this was an endoplasmic reticulum storage disease due to a specific protein misfolding within endoplasmic reticulum. It was rationalised that the two types of inclusions reflected the same aetiology, but that misfolded protein in the smaller granular bodies had entered the lysosomal system via endoplasmic reticulum autophagy. Although the cause was unclear, it most likely had a genetic aetiology or predisposition and, as such, has clinical relevance.


Assuntos
Catepsina D , Doença dos Neurônios Motores , Animais , Catepsina D/metabolismo , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/patologia , Doença dos Neurônios Motores/veterinária , Doença dos Neurônios Motores/metabolismo , Doença dos Neurônios Motores/patologia , Microscopia Eletrônica/veterinária , Aves
3.
Nanotechnology ; 32(28)2021 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-33254162

RESUMO

In this work, germanium nanowires rendered fully amorphous via xenon ion irradiation have been annealed within a transmission electron microscope to induce crystallization. During annealing crystallites appeared in some nanowires whilst others remained fully amorphous. Remarkably, even when nucleation occurred, large sections of the nanowires remained amorphous even though the few crystallites embedded in the amorphous phase were formed at a minimum of 200 °C above the temperature for epitaxial growth and 100 °C above the temperature for random nucleation and growth in bulk germanium. Furthermore, the presence of crystallites was observed to depend on the diameter of the nanowire. Indeed, the formation of crystallites occurred at a higher annealing temperature in thin nanowires compared with thicker ones. Additionally, nanowires with a diameter above 55 nm were made entirely crystalline when the annealing was performed at the temperature normally required for crystallization in germanium (i.e. 500 °C). It is proposed that oxygen atoms hinder both the formation and the growth of crystallites. Furthermore, as crystallites must reach a minimum size to survive and grow within the amorphous nanowires, the instability of crystallites may also play a limited role for the thinnest nanowires.

4.
Adv Sci (Weinh) ; 7(2): 1902209, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31993291

RESUMO

Crystalline calcium aluminates are a critical setting agent in cement. To date, few have explored the microscopic and dynamic mechanism of the transitions from molten aluminate liquids, through the supercooled state to glassy and crystalline phases, during cement clinker production. Herein, the first in situ measurements of viscosity and density are reported across all the principal molten phases, relevant to their eventual crystalline structures. Bulk atomistic computer simulations confirm that thermophysical properties scale with the evolution of network substructures interpenetrating melts on the nanoscale. It is demonstrated that the glass transition temperature (T g) follows the eutectic profile of the liquidus temperature (T m), coinciding with the melting zone in cement production. The viscosity has been uniquely charted over 14 decades for each calcium-aluminate phase, projecting and justifying the different temperature zones used in cement manufacture. The fragile-strong phase transitions are revealed across all supercooled phases coinciding with heterogeneous nucleation close to 1.2T g, where sintering and quenching occur in industrial-scale cement processing.

5.
Nat Mater ; 18(4): 406, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30792515

RESUMO

In the version of this Review Article originally published, parentheses were misplaced and the longitudinal and transverse speeds were inverted in two expressions for Poisson's ratio in Box 2; the expressions should have read, respectively, ν = (3B/G - 2)/(6B/G + 2) and ν = [½(Vl/Vt)2 - 1]/[(Vl/Vt)2 - 1].

6.
Nanomaterials (Basel) ; 8(12)2018 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-30558254

RESUMO

Materials exposed to plasmas in magnetic confinement nuclear reactors will accumulate radiation-induced defects and energetically implanted gas atoms (from the plasma and transmutations), of which insoluble helium (He) is likely to be the most problematic. The large surface-area-to-volume ratio exhibited by nanoporous materials provides an unsaturable sink with the potential to continuously remove both point defects and He. This property enhances the possibilities for these materials to be tailored for high radiation-damage resistance. In order to explore the potential effect of this on the individual ligaments of nanoporous materials, we present results on the response of tungsten (W) nanoparticles (NPs) to 15 keV He ion irradiation. Tungsten foils and various sizes of NPs were ion irradiated concurrently and imaged in-situ via transmission electron microscopy at 750 °C. Helium bubbles were not observed in NPs with diameters less than 20 nm but did form in larger NPs and the foils. No dislocation loops or black spot damage were observed in any NPs up to 100 nm in diameter but were found to accumulate in the W foils. These results indicate that a nanoporous material, particularly one made up of ligaments with characteristic dimensions of 30 nm or less, is likely to exhibit significant resistance to He accumulation and structural damage and, therefore, be highly tolerant to radiation.

7.
Adv Sci (Weinh) ; 5(5): 1700850, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29876211

RESUMO

Melting presents one of the most prominent phenomena in condensed matter science. Its microscopic understanding, however, is still fragmented, ranging from simplistic theory to the observation of melting point depressions. Here, a multimethod experimental approach is combined with computational simulation to study the microscopic mechanism of melting between these two extremes. Crystalline structures are exploited in which melting occurs into a metastable liquid close to its glass transition temperature. The associated sluggish dynamics concur with real-time observation of homogeneous melting. In-depth information on the structural signature is obtained from various independent spectroscopic and scattering methods, revealing a step-wise nature of the transition before reaching the liquid state. A kinetic model is derived in which the first reaction step is promoted by local instability events, and the second is driven by diffusive mobility. Computational simulation provides further confirmation for the sequential reaction steps and for the details of the associated structural dynamics. The successful quantitative modeling of the low-temperature decelerated melting of zeolite crystals, reconciling homogeneous with heterogeneous processes, should serve as a platform for understanding the inherent instability of other zeolitic structures, as well as the prolific and more complex nanoporous metal-organic frameworks.

8.
Sci Adv ; 4(3): eaao6827, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29536040

RESUMO

Glass-forming ability (GFA) is the ability of a liquid to avoid crystallization during cooling. Metal-organic frameworks (MOFs) are a new class of glass formers (1-3), with hitherto unknown dynamic and thermodynamic properties. We report the discovery of a new series of tetrahedral glass systems, zeolitic imidazolate framework-62 (ZIF-62) [Zn(Im2-x bIm x )], which have ultrahigh GFA, superior to any other known glass formers. This ultrahigh GFA is evidenced by a high viscosity η (105 Pa·s) at the melting temperature Tm, a large crystal-glass network density deficit (Δρ/ρg)network, no crystallization in supercooled region on laboratory time scales, a low fragility (m = 23), an extremely high Poisson's ratio (ν = 0.45), and the highest Tg/Tm ratio (0.84) ever reported. Tm and Tg both increase with benzimidazolate (bIm) content but retain the same ultrahigh Tg/Tm ratio, owing to high steric hindrance and frustrated network dynamics and also to the unusually low enthalpy and entropy typical of the soft and flexible nature of MOFs. On the basis of these versatile properties, we explain the exceptional GFA of the ZIF-62 system.

9.
Sci Rep ; 8(1): 512, 2018 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-29323118

RESUMO

Nanostructures may be exposed to irradiation during their manufacture, their engineering and whilst in-service. The consequences of such bombardment can be vastly different from those seen in the bulk. In this paper, we combine transmission electron microscopy with in situ ion irradiation with complementary computer modelling techniques to explore the physics governing the effects of 1.7 MeV Au ions on gold nanorods. Phenomena surrounding the sputtering and associated morphological changes caused by the ion irradiation have been explored. In both the experiments and the simulations, large variations in the sputter yields from individual nanorods were observed. These sputter yields have been shown to correlate with the strength of channelling directions close to the direction in which the ion beam was incident. Craters decorated by ejecta blankets were found to form due to cluster emission thus explaining the high sputter yields.

10.
RSC Adv ; 8(2): 914-920, 2018 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-35538986

RESUMO

Pt nanoparticles decorated with rose-like Bi2O2CO3 configurations were synthesized via a simple photoreduction method at room temperature. The structure, morphology, optical and electronic properties, and photocatalytic performance of the as-prepared materials were characterized. Compared to pure Bi2O2CO3, the Pt/Bi2O2CO3 photocatalysts show better performance in decomposing RhB, BPA and OTC under visible light (λ > 420 nm). The enhanced photocatalytic activity of Pt/Bi2O2CO3 could be attributed to the modification in light absorption (λ > 420 nm) charge migration and the separation of photo-generated electrons (e-) and holes (h+). Free radical trapping experiments demonstrated that the main active species of the catalytic reaction are different in decomposing RhB and BPA.

11.
Sci Rep ; 7(1): 7724, 2017 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-28798360

RESUMO

The self-organisation of void and gas bubbles in solids into superlattices is an intriguing nanoscale phenomenon. Despite the discovery of these lattices 45 years ago, the atomistics behind the ordering mechanisms responsible for the formation of these nanostructures are yet to be fully elucidated. Here we report on the direct observation via transmission electron microscopy of the formation of bubble lattices under He ion bombardment. By careful control of the irradiation conditions, it has been possible to engineer the bubble size and spacing of the superlattice leading to important conclusions about the significance of vacancy supply in determining the physical characteristics of the system. Furthermore, no bubble lattice alignment was observed in the <111> directions pointing to a key driving mechanism for the formation of these ordered nanostructures being the two-dimensional diffusion of self-interstitial atoms.

12.
Nat Commun ; 6: 8631, 2015 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-26548704

RESUMO

Bioactive glass ionomer cements (GICs) have been in widespread use for ∼40 years in dentistry and medicine. However, these composites fall short of the toughness needed for permanent implants. Significant impediment to improvement has been the requisite use of conventional destructive mechanical testing, which is necessarily retrospective. Here we show quantitatively, through the novel use of calorimetry, terahertz (THz) spectroscopy and neutron scattering, how GIC's developing fracture toughness during setting is related to interfacial THz dynamics, changing atomic cohesion and fluctuating interfacial configurations. Contrary to convention, we find setting is non-monotonic, characterized by abrupt features not previously detected, including a glass-polymer coupling point, an early setting point, where decreasing toughness unexpectedly recovers, followed by stress-induced weakening of interfaces. Subsequently, toughness declines asymptotically to long-term fracture test values. We expect the insight afforded by these in situ non-destructive techniques will assist in raising understanding of the setting mechanisms and associated dynamics of cementitious materials.


Assuntos
Cimentos de Ionômeros de Vidro , Teste de Materiais , Fenômenos Mecânicos , Calorimetria , Estresse Mecânico , Espectroscopia Terahertz , Vibração
13.
Nat Commun ; 6: 8079, 2015 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-26314784

RESUMO

Hybrid glasses connect the emerging field of metal-organic frameworks (MOFs) with the glass formation, amorphization and melting processes of these chemically versatile systems. Though inorganic zeolites collapse around the glass transition and melt at higher temperatures, the relationship between amorphization and melting has so far not been investigated. Here we show how heating MOFs of zeolitic topology first results in a low density 'perfect' glass, similar to those formed in ice, silicon and disaccharides. This order-order transition leads to a super-strong liquid of low fragility that dynamically controls collapse, before a subsequent order-disorder transition, which creates a more fragile high-density liquid. After crystallization to a dense phase, which can be remelted, subsequent quenching results in a bulk glass, virtually identical to the high-density phase. We provide evidence that the wide-ranging melting temperatures of zeolitic MOFs are related to their network topologies and opens up the possibility of 'melt-casting' MOF glasses.

14.
J Chem Phys ; 142(8): 084503, 2015 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-25725741

RESUMO

We examine the route of structural collapse and re-crystallization of faujasite-type (Na,K)-LSX zeolite. As the first step, a rather stable amorphous high density phase HDAcollapse is generated through an order-disorder transition from the original zeolite via a low density phase LDAcollapse, at around 790 °C. We find that the overall amorphization is driven by an increase in the bond angle distribution within T-O-T and a change in ring statistics to 6-membered TO4 (T = Si(4+), Al(3+)) rings at the expense of 4-membered rings. The HDAamorph transforms into crystalline nepheline, though, through an intermediate metastable carnegieite phase. In comparison, the melt-derived glass of similar composition, HDAMQ, crystallizes directly into the nepheline phase without the occurrence of intermediate carnegieite. This is attributed to the higher structural order of the faujasite-derived HDAcollapse which prefers the re-crystallization into the highly symmetric carnegieite phase before transformation into nepheline with lower symmetry.

15.
Nanoscale ; 7(6): 2633-40, 2015 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-25581777

RESUMO

The nanostructured Ce ion substituted cryptomelane-type octahedral molecular sieve (OMS-2) catalyst exhibits strong absorption in the entire solar spectrum region. The Ce ion substituted OMS-2 catalyst can efficiently transform the absorbed solar energy to thermal energy, resulting in a considerable increase of temperature. By combining the efficient photothermal conversion and thermocatalytic activity of the Ce ion substituted OMS-2 catalyst, we carried out full solar spectrum, visible-infrared, and infrared light driven catalysis with extremely high efficiency. Under the irradiation of full solar spectrum, visible-infrared, and infrared light, the Ce ion substituted OMS-2 catalyst exhibits extremely high catalytic activity and excellent durability for the oxidation of volatile organic pollutants such as benzene, toluene, and acetone. Based on the experimental evidence, we propose a novel mechanism of solar light driven thermocatalysis for the Ce ion substituted OMS-2 catalyst. The reason why the Ce ion substituted OMS-2 catalyst exhibits much higher catalytic activity than pure OMS-2 and CeO2/OMS-2 nano composite under the full solar spectrum irradiation is discussed.

16.
Sci Rep ; 4: 6334, 2014 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-25284688

RESUMO

Ion irradiation has been observed to induce a macroscopic flattening and in-plane shrinkage of graphene sheets without a complete loss of crystallinity. Electron diffraction studies performed during simultaneous in-situ ion irradiation have allowed identification of the fluence at which the graphene sheet loses long-range order. This approach has facilitated complementary ex-situ investigations, allowing the first atomic resolution scanning transmission electron microscopy images of ion-irradiation induced graphene defect structures together with quantitative analysis of defect densities using Raman spectroscopy.

17.
Sci Rep ; 4: 4716, 2014 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-24796578

RESUMO

The accumulation of defects, and in particular He bubbles, can have significant implications for the performance of materials exposed to the plasma in magnetic-confinement nuclear fusion reactors. Some of the most promising candidates for deployment into such environments are nanocrystalline materials as the engineering of grain boundary density offers the possibility of tailoring their radiation resistance properties. In order to investigate the microstructural evolution of ultrafine- and nanocrystalline-grained tungsten under conditions similar to those in a reactor, a transmission electron microscopy study with in situ 2 keV He(+) ion irradiation at 950 °C has been completed. A dynamic and complex evolution in the microstructure was observed including the formation of defect clusters, dislocations and bubbles. Nanocrystalline grains with dimensions less than around 60 nm demonstrated lower bubble density and greater bubble size than larger nanocrystalline (60-100 nm) and ultrafine (100-500 nm) grains. In grains over 100 nm, uniform distributions of bubbles and defects were formed. At higher fluences, large faceted bubbles were observed on the grain boundaries, especially on those of nanocrystalline grains, indicating the important role grain boundaries can play in trapping He and thus in giving rise to the enhanced radiation tolerance of nanocrystalline materials.

18.
Phys Rev Lett ; 111(6): 065504, 2013 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-23971585

RESUMO

Sputtering yields, enhanced by more than an order of magnitude, have been observed for 80 keV Xe ion irradiation of monocrystalline Au nanorods. Yields are in the range 100-1900 atoms/ion compared with values for a flat surface of ≈50. This enhancement results in part from the proximity of collision cascades and ensuing thermal spikes to the nanorod surfaces. Molecular dynamic modeling reveals that the range of incident angles occurring for irradiation of nanorods and the larger number of atoms in "explosively ejected" atomic clusters make a significant contribution to the enhanced yield.

19.
Rev Sci Instrum ; 84(12): 124901, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24387452

RESUMO

The development of novel contactless aerodynamic laser heated levitation techniques is reported that enable thermophysical properties of refractory liquids to be measured in situ in the solid, liquid, and supercooled liquid state and demonstrated here for alumina. Starting with polished crystalline ruby spheres, we show how, by accurately measuring the changing radius, the known density in the solid state can be reproduced from room temperature to the melting point at 2323 K. Once molten, by coupling the floating liquid drop to acoustic oscillations via the levitating gas, the mechanical resonance and damping of the liquid can be measured precisely with high-speed high-resolution shadow cast imaging. The resonance frequency relates to the surface tension, the decay constant to the viscosity, and the ellipsoidal size and shape of the levitating drop to the density. This unique instrumentation enables these related thermophysical properties to be recorded in situ over the entire liquid and supercooled range of alumina, from the boiling point at 3240 K, until spontaneous crystallization occurs around 1860 K, almost 500 below the melting point. We believe that the utility that this unique instrumentation provides will be applicable to studying these important properties in many other high temperature liquids.

20.
Notes Rec R Soc Lond ; 67(1): 37-58, 2013 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-24687094

RESUMO

This article explores Poisson's ratio, starting with the controversy concerning its magnitude and uniqueness in the context of the molecular and continuum hypotheses competing in the development of elasticity theory in the nineteenth century, moving on to its place in the development of materials science and engineering in the twentieth century, and concluding with its recent re-emergence as a universal metric for the mechanical performance of materials on any length scale. During these episodes France lost its scientific pre-eminence as paradigms switched from mathematical to observational, and accurate experiments became the prerequisite for scientific advance. The emergence of the engineering of metals followed, and subsequently the invention of composites-both somewhat separated from the discovery of quantum mechanics and crystallography, and illustrating the bifurcation of technology and science. Nowadays disciplines are reconnecting in the face of new scientific demands. During the past two centuries, though, the shape versus volume concept embedded in Poisson's ratio has remained invariant, but its application has exploded from its origins in describing the elastic response of solids and liquids, into areas such as materials with negative Poisson's ratio, brittleness, glass formation, and a re-evaluation of traditional materials. Moreover, the two contentious hypotheses have been reconciled in their complementarity within the hierarchical structure of materials and through computational modelling.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...