RESUMO
Ecological studies searching for drivers of biodiversity variation have frequently focused on taxonomic richness. However, more aspects of biodiversity, namely diversity facets can be considered to properly assess biotic-environment relationships. Here, we explore the environmental factors that could control the four biodiversity facets of aquatic Coleoptera from 93 regionally sampled Patagonian ponds. We also explore which are the ponds with high diversity values of all facets to prioritize them with a high conservation value. We fitted generalized additive models (GAM) to test relationships among environment (i.e., local and climatic variables) and aquatic beetles diversity facets (i.e., richness (SD), functional diversity (FD), phylogenetic diversity (PD), and local contribution to local beta diversity (LCBD). Climatic drivers were the most important predictors of beetle diversity facets, which exhibited linear and nonlinear responses. Thus, ponds from warmer Patagonia exhibited the highest values of SD and PD, whereas LCBD also peaked on colder sites suggesting that ponds under extreme temperatures sustain unique beetle assemblages. Moreover, ponds located in areas with higher precipitation variability exhibit the highest values of LCBD (i.e., unique assemblages). This result in addition to arid conditions in Patagonia prevailing since 16 m.y.a made us think that Patagonian beetle pond-dwellers are basally adapted to aridity. We calculated an index that summarizes the four facets patterns, to assign high conservation value to those ponds with higher index values. The relative importance of each facet varies from pond to pond. Hence, this multifaceteded approach not only allows us to identify priority areas for biodiversity conservation but also focuses on the importance of including multiple facets to understand biodiversity spatial patterns.
RESUMO
In the southern coast of Mar Chiquita Lake, central Argentina, mosquitoes affect public health and community livelihood, since they transmit pathogens to human beings causing diseases such as malaria, filariasis, encephalitis, yellow fever, and dengue, among others, and have a negative effect on cattle farming as well. To characterize the structure of the mosquito assemblage of the region, we determined the species composition and diversity, the temporal distribution of different species, and the patterns of species richness, abundance, and diversity across seasons. We collected adult mosquitoes over a two-year period (October 2004-September 2006) by means of CDC light traps baited with CO2 from 18:00 to 08:00 h during the warm season (October-April) and from 12:00 h to 18:00 h in the cold season (May-September). A total of 71,501 individuals from 30 species were collected, with Culex Linnaeus and Aedes Meigen genera representing more than 98% of collected specimens (61.5% and 37.3%, respectively). The higher values of richness and abundance of Culicidae were registered in warm seasons compared to cold seasons. Chao1 estimates suggested that more than 90% of the species were detected in all seasons. Mosquito abundance distribution fit the logarithmic series and log-normal models. Aedes albifasciatus (Macquart), Ae. scapularis (Rondani), Culex interfor Dyar, Cx. saltanensis Dyar, and Cx. dolosus (Lynch Arribálzaga), vectors incriminated in arbovirus transmission, were abundant year-round, with Cx. saltanensis and Cx. dolosus most prevalent in cold seasons. Further studies are needed to assess the role of these species in arbovirus transmission in this region of central Argentina.
Assuntos
Aedes , Culex , Culicidae , Animais , Argentina , Bovinos , Lagos , Mosquitos Vetores , Estações do AnoRESUMO
The efficiency of biodiversity assessments and biomonitoring studies is commonly challenged by limitations in taxonomic identification and quantification approaches. In this study, we assessed the effects of different taxonomic and numerical resolutions on a range of community structure metrics in invertebrate compositional data sets from six regions distributed across North and South America. We specifically assessed the degree of similarity in the metrics (richness, equitability, beta diversity, heterogeneity in community composition and congruence) for data sets identified to a coarse resolution (usually family level) and the finest taxonomic resolution practical (usually genus level, sometimes species or morphospecies) and by presence-absence and relative abundance numerical resolutions. Spearman correlations showed highly significant and positive associations between univariate metrics (richness and equitability) calculated for coarse- and finest-resolution datasets. Procrustes analysis detected significant congruence between composition datasets. Higher correlation coefficients were found for datasets with the same numerical resolutions regardless of the taxonomic level (about 90%), while the correlations for comparisons across numerical resolutions were consistently lower. Our findings indicate that family-level resolution can be used as a surrogate of finer taxonomic resolutions to calculate a range of biodiversity metrics commonly used to describe invertebrate community structure patterns in New World freshwater wetlands without significant loss of information. However, conclusions on biodiversity patterns derived from datasets with different numerical resolutions should be critically considered in studies on wetland invertebrates.
RESUMO
The effects of volcanic disturbance on aquatic communities and their recovery are poorly studied. To fill this gap, we explored the effects on fish communities in rivers in Argentina of the 2008 eruption of Chaitén Volcano in southern Chile (42.8° lat. S). The eruption produced volcanic plumes of ash that persisted in the atmosphere for several months. Borne on westerly winds, deposits of tephra crossed the Andes Mountains, reaching the Atlantic coast (Argentina). We compared the pre- and post-eruption abundances of a native catfish Hatcheria macraei, and two introduced trout from rivers covered by the volcanic plumes (Argentina) using Before-After-Control-Impact analysis to explore fish recovery. Total suspended solids from volcanic ashfall, macroinvertebrate abundance and richness, and species ecological attributes influenced the spatial arrangement of fish in rivers. Twenty-one months after the eruption, Rainbow Trout, Oncorhynchus mykiss, had not returned to pre-eruption abundances in the sampled rivers, and only four rivers had regained pre-eruption species composition, suggesting that disturbance is still ongoing. The abundance of introduced fishes was strongly, negatively correlated with TSS, suggesting that ashfall affected these fish probably by clogging and abrasion of the gills. Fish recolonized previously occupied habitats 4 days to 9 months after the disturbance. Hatcheria macraei was the slowest to recolonize, whereas O. mykiss were the pioneer fish in 4 rivers following the eruption and recolonized all 5 rivers where they were present prior to the eruption. In one river, the catfish and the Brown Trout, Salmo trutta, were still absent 21 months post-eruption, potentially owing to the lack of riparian cover that would have deflected the entry of ash. Rainbow Trout suffered significant declines in abundance, whereas Brown Trout and catfish generally did not, owing to their ecological attributes. Total fish abundance was negatively correlated with ash thickness, but positively related to prey availability.
Assuntos
Peixes-Gato , Rios , Animais , Argentina , Chile , EcossistemaRESUMO
Environmental variables related to vegetation and weather are some of the most influential factors that impacting Aedes (Stegomya) aegypti, a mosquito vector of dengue, chikungunya and Zika viruses. In this paper, we aim to develop temporal predictive models for Ae. aegypti oviposition activity utilizing vegetation and meteorological variables as predictors in Córdoba city (Argentina). Eggs were collected using ovitraps placed throughout the city from 2009 to 2012 that were replaced weekly. Temporal generalized linear mixed models were developed with negative binomial distributions of errors that model average number of eggs collected weekly as a function of vegetation and meteorological variables with time lags. The best model included a vegetation index, vapor pressure of water, precipitation and photoperiod. With each unit of increment in vegetation index per week the average number of eggs increased by 1.71 in the third week. Furthermore, each millimeter increase of accumulated rain during 4 weeks was associated with a decrease of 0.668 in the average number of eggs found in the following week. This negative effect of precipitation could occur during abundant rainfalls that fill containers completely, thereby depriving females of oviposition sites and leading them to search for other suitable breeding sites. Furthermore, the average number of eggs increased with the photoperiod at low values of mean vapor pressure; however the average number of eggs decreased at high values of mean vapor pressure, and the positive relationship between the response variable and mean vapor pressure was stronger at low values of photoperiod. Additionally, minimum temperature was associated positively with oviposition activity and that low minimum temperatures could be a limiting factor in Ae. aegypti oviposition activity. Our results emphasize the important role that climatic variables such as temperature, precipitation, and vapor pressure play in Ae. aegypti oviposition activity and how these variables along with vegetation indices can be used to inform predictive temporal models of Ae. aegypti population dynamics that can be used for informing mosquito population control and arbovirus mitigation strategies.
Assuntos
Aedes/fisiologia , Modelos Biológicos , Oviposição , Fotoperíodo , Animais , Argentina , Feminino , Conceitos Meteorológicos , Óvulo , Dinâmica Populacional , Chuva , Fatores de Tempo , Pressão de VaporRESUMO
BACKGROUND: Argentina is located at the southern temperate range of arboviral transmission by the mosquito Aedes aegypti and has experienced a rapid increase in disease transmission in recent years. Here we present findings from an entomological surveillance study that began in Córdoba, Argentina, following the emergence of dengue in 2009. METHODS: From 2009 to 2017, larval surveys were conducted monthly, from November to May, in 600 randomly selected households distributed across the city. From 2009 to 2013, ovitraps (n = 177) were sampled weekly to monitor the oviposition activity of Ae. aegypti. We explored seasonal and interannual dynamics of entomological variables and dengue transmission. Cross correlation analysis was used to identify significant lag periods. RESULTS: Aedes aegypti were detected over the entire study period, and abundance peaked during the summer months (January to March). We identified a considerable increase in the proportion of homes with juvenile Ae. aegypti over the study period (from 5.7% of homes in 2009-10 to 15.4% of homes in 2016-17). Aedes aegypti eggs per ovitrap and larval abundance were positively associated with temperature in the same month. Autochthonous dengue transmission peaked in April, following a peak in imported dengue cases in March; autochthonous dengue was not positively associated with vector or climate variables. CONCLUSIONS: This longitudinal study provides insights into the complex dynamics of arbovirus transmission and vector populations in a temperate region of arbovirus emergence. Our findings suggest that Córdoba is well suited for arbovirus disease transmission, given the stable and abundant vector populations. Further studies are needed to better understand the role of regional human movement.
RESUMO
Analyses of biota at lower latitudes may presage impacts of climate change on biota at higher latitudes. Macroinvertebrate assemblages in depressional wetlands may be especially sensitive to climate change because weather-related precipitation and evapotranspiration are dominant ecological controls on habitats, and organisms of depressional wetlands are temperature-sensitive ectotherms. We aimed to better understand how wetland macroinvertebrate assemblages were structured according to geography and climate. To do so, we contrasted aquatic-macroinvertebrate assemblage structure (family level) between subtropical and temperate depressional wetlands of North and South America using presence-absence data from 264 of these habitats across the continents and more-detailed relative-abundance data from 56 depressional wetlands from four case-study locations (North Dakota and Georgia in North America; southern Brazil and Argentinian Patagonia in South America). Both data sets roughly partitioned wetland numbers equally between the two climatic zones and between the continents. We used ordination methods (PCA and NMDS) and tests of multivariate dispersion (PERMDISP) to assess the distribution and the homogeneity in variation in the composition of macroinvertebrate assemblages across climates and continents, respectively. We found that macroinvertebrate assemblage structures in the subtropical depressional wetlands of North and South America were similar to each other (at the family level), while assemblages in the North and South American temperate wetlands were unique from the subtropics, and from each other. Tests of homogeneity of multivariate dispersion indicated that family-level assemblage structures were more homogeneous in wetlands from the subtropical than the temperate zones. Our study suggests that ongoing climate change may result in the homogenization of macroinvertebrate assemblage structures in temperate zones of North and South America, with those assemblages becoming enveloped by assemblages from the subtropics. Biotic homogenization, more typically associated with other kinds of anthropogenic factors, may also be affected by climate change.
Assuntos
Ecossistema , Áreas Alagadas , Animais , Brasil , Mudança Climática , Invertebrados , América do NorteRESUMO
Culex is the largest subgenus within the genus Culex that includes important vectors of diseases. The correct identification of mosquitoes is critical for effective control strategies. Wing geometric morphometrics (WGM) has been used to identify mosquito species alongside traditional identification methods. Here, WGM was used for eleven Culex species from São Paulo, Brazil, and one from Esquel, Argentina. Adult mosquitoes were collected using CDC (Centers for Disease Control) traps, morphologically identified and analyzed by WGM. The canonical variate analysis (CVA) was performed and a Neighbor-joining (NJ) tree was constructed to illustrate the patterns of species segregation. A cross-validated reclassification test was also carried out. From 110 comparisons in the cross-validated reclassification test, 87 yielded values higher than 70%, with 13 comparisons yielding 100% reclassification scores. Culexquinquefasciatus yielded the highest reclassification scores among the analyzed species, corroborating with the results obtained by the CVA, in which Cx. quinquefasciatus was the most distinct species. The high values obtained at the cross-validated reclassification test and in the NJ analysis as well as the segregation observed at the CVA made it possible to distinguish among Culex species with high degrees of confidence, suggesting that WGM is a reliable tool to identify Culex species of the subgenus Culex.
RESUMO
Culex is the largest subgenus within the genus Culex that includes important vectors of diseases. The correct identification of mosquitoes is critical for effective control strategies. Wing geometric morphometrics (WGM) has been used to identify mosquito species alongside traditional identification methods. Here, WGM was used for eleven Culex species from São Paulo, Brazil, and one from Esquel, Argentina. Adult mosquitoes were collected using CDC (Centers for Disease Control) traps, morphologically identified and analyzed by WGM. The canonical variate analysis (CVA) was performed and a Neighbor-joining (NJ) tree was constructed to illustrate the patterns of species segregation. A cross-validated reclassification test was also carried out. From 110 comparisons in the cross-validated reclassification test, 87 yielded values higher than 70%, with 13 comparisons yielding 100% reclassification scores. Culexquinquefasciatus yielded the highest reclassification scores among the analyzed species, corroborating with the results obtained by the CVA, in which Cx. quinquefasciatus was the most distinct species. The high values obtained at the cross-validated reclassification test and in the NJ analysis as well as the segregation observed at the CVA made it possible to distinguish among Culex species with high degrees of confidence, suggesting that WGM is a reliable tool to identify Culex species of the subgenus Culex.
RESUMO
BACKGROUND: Knowledge of immature habitats is an important focus for investigations of mosquito community ecology, and may improve our understanding of how environmental variables increase risk of mosquito-borne diseases by influencing the distributions and abundances of species. In Patagonia region, where climatic and ecological factors could be only borderline suitable for mosquito development, relatively little is known about larval ecology. The present study focuses on associations of environmental conditions in natural aquatic habitats with abundances of mosquito species that have colonized such habitats in Patagonia. METHODS: We described the mosquito community composition within 26 natural temporary pools, and assessed the general relationships between environmental variables (pH, water temperature, conductivity, salinity, dissolved oxygen, aquatic plant cover and main nutrients) and larval abundances using redundancy analysis (RDA). Additionally, we compiled monthly climate data and vegetation indices for each larval habitat, and estimated the probability of presence for two of the most abundant species, describing through generalized linear models (GLM) the environmental, climatic and landscape variables-probability of occurrence relationships. RESULTS: Seven species belonging to the genera Culex and Aedes were identified, with Culex apicinus, Cx. acharistus and Aedes albifasciatus being the most abundant. Mean larval densities were low (6.8 ± 2.8 larvae/dip), and the highest species richness and larval densities were recorded in northern and central areas. Aedes albifasciatus, a species of sanitary importance, was widely distributed, being the only one collected south of the 45th parallel of S latitude. RDA indicated that aquatic conductivity, pH, water depth, dissolved oxygen, ammonia and soluble reactive phosphorous accounted for the main part of the variation in the species composition. According to GLMs, wind speed was the variable that best described the presence of Ae. albifasciatus, and the probability of finding this species was positively associated with high wind speed values. On the other hand, the EVI vegetation index was the only variable included in the Cx. apicinus model, whereby there was a great probability of presence in arid areas with lower EVI values. CONCLUSIONS: Our results enhance our knowledge of larval habitat ecology under the extreme environmental conditions of Patagonia and will guide future efforts to understand how multiple effects can affect mosquito ecology and public health at higher latitudes.
Assuntos
Culicidae/embriologia , Ecossistema , Animais , Argentina , Temperatura Baixa , Culicidae/classificação , Feminino , Larva/crescimento & desenvolvimento , MasculinoRESUMO
A growing body of literature on mosquito oviposition behavior supports the hypothesis that females place eggs in habitats that provide best available opportunity for growth, development, and maturation of their offspring. We conducted a field experiment to evaluate Culex oviposition behavior in response to the interspecific competitor Aedes triseriatus (Say) (Diptera: Culicidae) larvae, and resources in the form of quantity of plant detritus, and dissolved nitrogen (TN) and phosphorus (TP) derived from that detritus. We tested a set of specific predictions: 1) As a poorer competitor, Culex will avoid ovipositing in containers with superior interspecific competitors; 2) Culex choose oviposition habitats that contain greater amount of resources for the microbial food of their offspring; 3) Sufficiently high resource abundance can override avoidance of oviposition in containers with interspecific competitors. Culex restuans Theobald (Diptera: Culicidae) was the only species ovipositing, and the oviposition responses changed over time. The effect of resources was more important in driving oviposition decisions at the beginning and end of the experiment. The amount of resources, as manifest by TN and TP concentrations, had differential effects on oviposition. At the beginning females laid more eggs in containers with low detritus, which had the highest TN. After that, females preferred those containers with high detritus, which had low TN and high TP. The effect of competitors was important only during the middle of the experiment. Paradoxically, even as a poorer competitor Cx. restuans preferentially oviposited in containers with late-instar Ae. triseriatus, suggesting that the presence of successful heterospecifics indicates a good quality larval habitat.
Assuntos
Culex/fisiologia , Ecossistema , Oviposição , Aedes/crescimento & desenvolvimento , Aedes/fisiologia , Animais , Culex/crescimento & desenvolvimento , Feminino , Larva/crescimento & desenvolvimento , Larva/fisiologiaRESUMO
We investigated how ambient temperature under fluctuating conditions affects the larval-pupal immature traits of Aedes aegypti and Culex quinquefasciatus mosquitoes from Córdoba city, Argentina, and established each species development threshold and physiological time. Based on life tables, three cohorts of each mosquito species were reared in the laboratory under small fluctuating temperatures conditions of 15.2±1.7°C, 17.9±1.6°C, 21.6±0.7°C and 25.3±0.4°C for Ae. aegypti, and 16.6±1.7°C, 18.7±1.7°C and 25.2±0.3°C for Cx. quinquefasciatus. Immature development time and survival values, and also thermal development threshold and physiological time were estimated. Development times of all larval and pupal stages of Ae. aegypti and Cx. quinquefasciatus were significantly affected by the rearing temperatures, decreasing when temperature increased. Mean Ae. aegypti total (larva+pupa) development time ranged from 21.9 to 8.6 days, at 15.2 and 25.3°C, whereas, for Cx. quinquefasciatus varied between 23.5 to 9.2 days at 16.6 and 25.2°C, respectively. Larval and pupal survival of both species was affected by different rearing temperatures, increasing in general as temperature increased. For Ae. aegypti the total immature survival ranged from 26% at 15.2°C to 92% at 21.6°C; however, temperature did not have significant effect on this variable. The total immature survival of Cx. quinquefasciatus was significantly and positively affected by temperatures, ranging from 32 to 88%, at 16.6 and 25.2°C. The temperature development threshold and the physiological time estimated for Ae. aegypti and Cx. quinquefasciatus were 11.11°C and 93.74 degree-days, and 10.96°C and 136.87 degree-days, respectively. The results of the present study showed that temperature significantly affects the larval-pupal immature traits of these mosquito species of sanitary importance, from the central region of Argentina. All the parameters recorded are useful for the development of mosquito management models.
Assuntos
Aedes/crescimento & desenvolvimento , Culex/crescimento & desenvolvimento , Larva/crescimento & desenvolvimento , Pupa/crescimento & desenvolvimento , Animais , Argentina , Estudos de Coortes , TemperaturaRESUMO
The aims of this study were to characterise the ground-level larval habitats of the mosquito Culex quinquefasciatus, to determine the relationships between habitat characteristics and larval abundance and to examine seasonal larval-stage variations in Córdoba city. Every two weeks for two years, 15 larval habitats (natural and artificial water bodies, including shallow wells, drains, retention ponds, canals and ditches) were visited and sampled for larval mosquitoes. Data regarding the water depth, temperature and pH, permanence, the presence of aquatic vegetation and the density of collected mosquito larvae were recorded. Data on the average air temperatures and accumulated precipitation during the 15 days prior to each sampling date were also obtained. Cx. quinquefasciatus larvae were collected throughout the study period and were generally most abundant in the summer season. Generalised linear mixed models indicated the average air temperature and presence of dicotyledonous aquatic vegetation as variables that served as important predictors of larval densities. Additionally, permanent breeding sites supported high larval densities. In Córdoba city and possibly in other highly populated cities at the same latitude with the same environmental conditions, control programs should focus on permanent larval habitats with aquatic vegetation during the early spring, when the Cx. quinquefasciatus population begins to increase.
Assuntos
Distribuição Animal/fisiologia , Culex/crescimento & desenvolvimento , Ecossistema , Estações do Ano , Animais , Organismos Aquáticos/fisiologia , Argentina , Larva , Magnoliopsida , Conceitos Meteorológicos , Controle de Mosquitos/métodos , Crescimento Demográfico , Água/parasitologiaRESUMO
The aims of this study were to characterise the ground-level larval habitats of the mosquito Culex quinquefasciatus, to determine the relationships between habitat characteristics and larval abundance and to examine seasonal larval-stage variations in Córdoba city. Every two weeks for two years, 15 larval habitats (natural and artificial water bodies, including shallow wells, drains, retention ponds, canals and ditches) were visited and sampled for larval mosquitoes. Data regarding the water depth, temperature and pH, permanence, the presence of aquatic vegetation and the density of collected mosquito larvae were recorded. Data on the average air temperatures and accumulated precipitation during the 15 days prior to each sampling date were also obtained. Cx. quinquefasciatus larvae were collected throughout the study period and were generally most abundant in the summer season. Generalised linear mixed models indicated the average air temperature and presence of dicotyledonous aquatic vegetation as variables that served as important predictors of larval densities. Additionally, permanent breeding sites supported high larval densities. In Córdoba city and possibly in other highly populated cities at the same latitude with the same environmental conditions, control programs should focus on permanent larval habitats with aquatic vegetation during the early spring, when the Cx. quinquefasciatus population begins to increase.
Assuntos
Animais , Distribuição Animal/fisiologia , Culex/crescimento & desenvolvimento , Ecossistema , Estações do Ano , Magnoliopsida , Argentina , Organismos Aquáticos/fisiologia , Larva , Conceitos Meteorológicos , Controle de Mosquitos/métodos , Crescimento Demográfico , Água/parasitologiaRESUMO
The presence of Aedes aegypti is reported beyond its current limit of distribution in Argentina, in the city of Neuquén, Neuquén Province. Ovitraps were placed to collect Ae. aegypti eggs between December 2009 and April 2010. The geographical distribution of Culex eduardoi, Psorophora ciliata and Ps. cingulata is extended with new records from two provinces.
Relata-se a presença de Aedes aegypti ao sul de seu limite atual de distribuição na Argentina, na cidade de Neuquén, província de Neuquén. Ovitrampas foram instaladas de dezembro/2009 a abril/2010. A distribuição geográfica de Culex eduardoi, Psorophora ciliata e Ps. cingulata aumenta, incluindo novos registros para duas províncias.
Se reporta la presencia de Aedes aegypti al sur de su límite actual de distribución en Argentina, en la ciudad de Neuquén, provincia de Neuquén. Huevos de esta especie fueron colectados mediante el uso de ovitrampas que fueron colocadas de diciembre/2009 a abril/2010. La distribución geográfica de Culex eduardoi, Psorophora ciliata y Ps. cingulata se amplía, incluyendo nuevos registros para dos provincias.
Assuntos
Animais , Feminino , Masculino , Culicidae/classificação , Argentina/epidemiologia , Culicidae/fisiologia , Dengue/epidemiologia , Larva/classificação , Larva/fisiologiaRESUMO
The presence of Aedes aegypti is reported beyond its current limit of distribution in Argentina, in the city of Neuquén, Neuquén Province. Ovitraps were placed to collect Ae. aegypti eggs between December 2009 and April 2010. The geographical distribution of Culex eduardoi, Psorophora ciliata and Ps. cingulata is extended with new records from two provinces.
Assuntos
Culicidae/classificação , Animais , Argentina/epidemiologia , Culicidae/fisiologia , Dengue/epidemiologia , Feminino , Larva/classificação , Larva/fisiologia , MasculinoRESUMO
Differences in biological features of immature and adult Aedes aegypti, as well as variability in vector competence, seem consistent with the existence of genetic variation among subpopulations and adaptation to local conditions. This work aims to compare the bionomics of four Ae. aegypti subpopulations derived from different geographical regions reared under temperate conditions. Life statistics of three Ae. aegypti subpopulations from the provinces of Córdoba, Salta, and Misiones were studied based on horizontal life tables. The Rockefeller strain was used as a control. The development time required to complete the larva and pupa stages varied from 6.91 to 7.95 and 1.87 to 2.41 days, respectively. Significant differences were found in mean larval development time between the Córdoba and Orán subpopulations. The larva-pupa development time was similar in all the subpopulations. However, survival values varied significantly between the Orán and San Javier subpopulations. The proportion of emergent males did not differ from females within each subpopulation nor among them. Adult longevity was similar among the subpopulations. The average number of eggs laid by each female was significantly different. The Rockefeller strain laid a significantly greater number of eggs (463.99 eggs/female) than the rest of the subpopulations. Moreover, differences in the demographic growth parameter R(o) were detected among the four subpopulations. The differences obtained in larval development time, larva-pupa survival values, and net reproductive rates among the subpopulations might reflect underlying genetic differences as a result of colonization from different regions that probably involve adaptations to local conditions.