RESUMO
During early postpartum, high-producing dairy cows undergo a period of extensive tissue catabolism because of negative nutrien t balance. Homeorrhetic controls assure that nutrients are partitioned to favor lactation at the same time that homeostasis secures survival. However, unrestrained metabolic disturbances often lead to diseases which, in turn, dramatically decrease both productive and reproductive performance. Negative nutrient balance ha s been associated with compromised immune and reproductive functions in dairy cows. Low circulating concentrations of glucose and insulin associated with elevated concentrations of non-esterified fatty acids and ketone bodies postpartum have disruptive and detrimental effects on the oocyte, granulosa and immune cells. Negative nutrient balance is associated with changes in the pattern of ovarian follicle growth which can indirectly affect oocyte quality. Some of this disruption seems to be the result of endocrine and biochemical changes that alter the micro- environment of the growing and maturing oocyte. In addition, cows under negative nutrient balance have extended periods of anovulation. Postpartum anestrus, as well as infertility, is magnified by losses of body condition during the early postpartum period. The underlying mechanism for resumption of ovulatory cycles seems to be associated with metabolic signals and regulatory hormones primarily insulin and insulin- like growth factor (IGF)-1, which link nutritional status with gonadotropin secretion, recoupling of the growth hormone-IGF system, and follicle maturation and ovulation. Feeding diets th at promote increases in plasma glucose and insulin may improve the metabolic and endocrine status of cows in early lactation. Furthermore, fertility in postpartum cows is also determined by uterine health. Reductions in circulating concentrations of Ca and antioxidant vitamins around parturition are also linked with impaired immune competence and result in greater risk of uterine diseases that impair reproduction. Specific nutrients and dietary ingredients have been implicated to affect reproduction in cattle. Excess intake of dietary protein has been suggested as detrimental to fertility, although feeding excess of dietary protein can no longer be justified. Addition of moderate amounts of supplemental fat to the diet improves caloric intake, modulates prostaglandin F2 secretion by the uterus, affects ovarian dynamics, enhances luteal function and embryo quality, and has moderate positive effects on fertility. More specifically, some fatty acids might impact fertilization rate and embryo quality in dairy cows. On the contrary, some dietary ingredients, such as gossypol, when ingested in large quantities decrease fertility of dairy cows because of its negative effects on embryo quality and pregnancy maintenance.(AU)
Assuntos
Animais , Metabolismo/fisiologia , Homeostase/fisiologia , Oócitos/citologia , Dieta , Bovinos/classificação , Ciências da Nutrição AnimalRESUMO
During early postpartum, high-producing dairy cows undergo a period of extensive tissue catabolism because of negative nutrien t balance. Homeorrhetic controls assure that nutrients are partitioned to favor lactation at the same time that homeostasis secures survival. However, unrestrained metabolic disturbances often lead to diseases which, in turn, dramatically decrease both productive and reproductive performance. Negative nutrient balance ha s been associated with compromised immune and reproductive functions in dairy cows. Low circulating concentrations of glucose and insulin associated with elevated concentrations of non-esterified fatty acids and ketone bodies postpartum have disruptive and detrimental effects on the oocyte, granulosa and immune cells. Negative nutrient balance is associated with changes in the pattern of ovarian follicle growth which can indirectly affect oocyte quality. Some of this disruption seems to be the result of endocrine and biochemical changes that alter the micro- environment of the growing and maturing oocyte. In addition, cows under negative nutrient balance have extended periods of anovulation. Postpartum anestrus, as well as infertility, is magnified by losses of body condition during the early postpartum period. The underlying mechanism for resumption of ovulatory cycles seems to be associated with metabolic signals and regulatory hormones primarily insulin and insulin- like growth factor (IGF)-1, which link nutritional status with gonadotropin secretion, recoupling of the growth hormone-IGF system, and follicle maturation and ovulation. Feeding diets th at promote increases in plasma glucose and insulin may improve the metabolic and endocrine status of cows in early lactation. Furthermore, fertility in postpartum cows is also determined by uterine health. Reductions in circulating concentrations of Ca and antioxidant vitamins around parturition are also linked with impaired immune competence and result in greater risk of uterine diseases that impair reproduction. Specific nutrients and dietary ingredients have been implicated to affect reproduction in cattle. Excess intake of dietary protein has been suggested as detrimental to fertility, although feeding excess of dietary protein can no longer be justified. Addition of moderate amounts of supplemental fat to the diet improves caloric intake, modulates prostaglandin F2 secretion by the uterus, affects ovarian dynamics, enhances luteal function and embryo quality, and has moderate positive effects on fertility. More specifically, some fatty acids might impact fertilization rate and embryo quality in dairy cows. On the contrary, some dietary ingredients, such as gossypol, when ingested in large quantities decrease fertility of dairy cows because of its negative effects on embryo quality and pregnancy maintenance.