Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
J Appl Clin Med Phys ; 22(10): 249-260, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34472700

RESUMO

A novel routine dual-energy computed tomography (DECT) quality control (QC) program was developed to address the current deficiency of routine QC for this technology. The dual-energy quality control (DEQC) program features (1) a practical phantom with clinically relevant materials and concentrations, (2) a clinically relevant acquisition, reconstruction, and postprocessing protocol, and (3) a fully automated analysis software to extract quantitative data for database storage and trend analysis. The phantom, designed for easy set up for standalone or adjacent imaging next to the ACR phantom, was made in collaboration with an industry partner and informed by clinical needs to have four iodine inserts (0.5, 1, 2, and 5 mg/ml) and one calcium insert (100 mg/ml) equally spaced in a cylindrical water-equivalent background. The imaging protocol was based on a clinical DECT abdominal protocol capable of producing material specific concentration maps, virtual unenhanced images, and virtual monochromatic images. The QC automated analysis software uses open-source technologies which integrates well with our current automated CT QC database. The QC program was tested on a GE 750 HD scanner and two Siemens SOMATOM FLASH scanners over a 3-month period. The automated algorithm correctly identified the appropriate region of interest (ROI) locations and stores measured values in a database for monitoring and trend analysis. Slight variations in protocol settings were noted based on manufacturer. Overall, the project proved to provide a convenient and dependable clinical tool for routine oversight of DE CT imaging within the clinic.


Assuntos
Iodo , Imagem Radiográfica a Partir de Emissão de Duplo Fóton , Humanos , Imagens de Fantasmas , Controle de Qualidade , Tomografia Computadorizada por Raios X
2.
Ultrasound Med Biol ; 46(3): 750-765, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31806500

RESUMO

This work demonstrates the potential for using a deformable mapping method to register lesions between dedicated breast computed tomography (bCT) and both automated breast ultrasound (ABUS) and digital breast tomosynthesis (DBT) images (craniocaudal [CC] and mediolateral oblique [MLO] views). Two multi-modality breast phantoms with external fiducial markers attached were imaged by the three modalities. The DBT MLO view was excluded for the second phantom. The automated deformable mapping algorithm uses biomechanical modeling to determine corresponding lesions based on distances between their centers of mass (dCOM) in the deformed bCT model and the reference model (DBT or ABUS). For bCT to ABUS, the mean dCOM was 5.2 ± 2.6 mm. For bCT to DBT (CC), the mean dCOM was 5.1 ± 2.4 mm. For bCT to DBT (MLO), the mean dCOM was 4.7 ± 2.5 mm. This application could help improve a radiologist's efficiency and accuracy in breast lesion characterization, using multiple imaging modalities.


Assuntos
Algoritmos , Neoplasias da Mama/diagnóstico por imagem , Processamento de Imagem Assistida por Computador , Mamografia/métodos , Tomografia Computadorizada por Raios X/métodos , Ultrassonografia Mamária/métodos , Imagens de Fantasmas
3.
Med Image Anal ; 60: 101599, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31760192

RESUMO

This work investigates the application of a deformable localization/mapping method to register lesions between the digital breast tomosynthesis (DBT) craniocaudal (CC) and mediolateral oblique (MLO) views and automated breast ultrasound (ABUS) images. This method was initially validated using compressible breast phantoms. This methodology was applied to 7 patient data sets containing 9 lesions. The automated deformable mapping algorithm uses finite element modeling and analysis to determine corresponding lesions based on the distance between their centers of mass (dCOM) in the deformed DBT model and the reference ABUS model. This technique shows that location information based on external fiducial markers is helpful in the improvement of registration results. However, use of external markers are not required for deformable registration results described by this methodology. For DBT (CC view) mapped to ABUS, the mean dCOM was 14.9 ±â€¯6.8 mm based on 9 lesions using 6 markers in deformable analysis. For DBT (MLO view) mapped to ABUS, the mean dCOM was 13.7 ±â€¯6.8 mm based on 8 lesions using 6 markers in analysis. Both DBT views registered to ABUS lesions showed statistically significant improvements (p ≤ 0.05) in registration using the deformable technique in comparison to a rigid registration. Application of this methodology could help improve a radiologist's characterization and accuracy in relating corresponding lesions between DBT and ABUS image datasets, especially for cases of high breast densities and multiple masses.


Assuntos
Neoplasias da Mama/diagnóstico por imagem , Interpretação de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/métodos , Mamografia/métodos , Ultrassonografia Mamária/métodos , Algoritmos , Fenômenos Biomecânicos , Conjuntos de Dados como Assunto , Feminino , Análise de Elementos Finitos , Humanos , Aumento da Imagem/métodos , Imagens de Fantasmas
4.
Med Phys ; 45(10): 4402-4417, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30066340

RESUMO

PURPOSE: To develop a deformable mapping technique to match corresponding lesions between digital breast tomosynthesis (DBT) and automated breast ultrasound (ABUS) images. METHODS: External fiducial markers were attached to the surface of two CIRS multi-modality compressible breast phantoms (A and B) containing multiple simulated lesions. Both phantoms were imaged with DBT (upright positioning with cranial-caudal compression) and ABUS (supine positioning with anterior-to-chest wall compression). The lesions and markers were manually segmented by three different readers. Reader segmentation similarity and reader reproducibility were assessed using Dice similarity coefficients (DSC) and distances between centers of mass (dCOM ). For deformable mapping between the modalities each reader's segmented dataset was processed with an automated deformable mapping algorithm as follows: First, Morfeus, a finite element (FE) based multi-organ deformable image registration platform, converted segmentations into triangular surface meshes. Second, Altair HyperMesh, a FE pre-processor, created base FE models for the ABUS and DBT data sets. All deformation is performed on the DBT image data; the ABUS image sets remain fixed throughout the process. Deformation was performed on the external skin contour (DBT image set) to match the external skin contour on the ABUS set, and the locations of the external markers were used to morph the skin contours to be within a user-defined distance. Third, the base DBT-FE model was deformed with the FE analysis solver, Optistruct. Deformed DBT lesions were correlated with matching lesions in the base ABUS FE model. Performance (lesion correlation) was assessed with dCOM for all corresponding lesions and lesion overlap. Analysis was performed to determine the minimum number of external fiducial markers needed to create the desired correlation and the improvement of correlation with the use of external markers. RESULTS: Average DSC for reader similarity ranged from 0.88 to 0.91 (ABUS) and 0.57 to 0.83 (DBT). Corresponding dCOM ranged from 0.20 to 0.36 mm (ABUS) and 0.11 to 1.16 mm (DBT). Lesion correlation is maximized when all corresponding markers are within a maximum distance of 5 mm. For deformable mapping of phantom A, without the use of external markers, only two of six correlated lesions showed overlap with an average lesion dCOM of 6.8 ± 2.8 mm. With use of three external fiducial markers, five of six lesions overlapped and average dCOM improved to 4.9 ± 2.4 mm. For deformable mapping of Phantom B without external markers analysis, four lesions were correlated of seven with overlap between only one of seven lesions, and an average lesion dCOM of 9.7 ± 3.5 mm. With three external markers, all seven possible lesions were correlated with overlap between four of seven lesions. The average dCOM was 8.5 ± 4.0 mm. CONCLUSION: This work demonstrates the potential for a deformable mapping technique to relate corresponding lesions in DBT and ABUS images by showing improved lesion correspondence and reduced lesion registration errors with the use of external fiducial markers. The technique should improve radiologists' characterization of breast lesions which can reduce patient callbacks, misdiagnoses and unnecessary biopsies.


Assuntos
Neoplasias da Mama/diagnóstico por imagem , Mama/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos , Mamografia , Ultrassonografia Mamária , Algoritmos , Automação , Marcadores Fiduciais , Humanos , Processamento de Imagem Assistida por Computador/normas , Imagens de Fantasmas
5.
Health Phys ; 112(3): 237-245, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28121723

RESUMO

Optically-stimulated luminescent dosimeters are capable of being interrogated multiple times post-irradiation. Each interrogation removes a fraction of the signal stored within the optically-stimulated luminescent dosimeter. This signal loss must be corrected to avoid systematic errors in estimating the average signal of a series of optically-stimulated luminescent dosimeter interrogations and requires a minimum number of consecutive readings to determine an average signal that is within a desired accuracy of the true signal with a desired statistical confidence. This paper establishes a technical basis for determining the required number of readings for a particular application of these dosimeters when using certain OSL dosimetry systems.


Assuntos
Artefatos , Guias como Assunto , Iluminação/normas , Dispositivos Ópticos/normas , Dosimetria Termoluminescente/instrumentação , Dosimetria Termoluminescente/normas , Calibragem/normas , Desenho de Equipamento , Análise de Falha de Equipamento , Iluminação/instrumentação , Doses de Radiação , Reprodutibilidade dos Testes , Semicondutores , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...