Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 8(1): e54686, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23359806

RESUMO

In the austral summer of 2011 we undertook an investigation of three volcanic highs in the Central Bransfield Basin, Antarctica, in search of hydrothermal activity and associated fauna to assess changes since previous surveys and to evaluate the extent of hydrothermalism in this basin. At Hook Ridge, a submarine volcanic edifice at the eastern end of the basin, anomalies in water column redox potential (E(h)) were detected close to the seafloor, unaccompanied by temperature or turbidity anomalies, indicating low-temperature hydrothermal discharge. Seepage was manifested as shimmering water emanating from the sediment and from mineralised structures on the seafloor; recognisable vent endemic fauna were not observed. Pore fluids extracted from Hook Ridge sediment were depleted in chloride, sulfate and magnesium by up to 8% relative to seawater, enriched in lithium, boron and calcium, and had a distinct strontium isotope composition ((87)Sr/(86)Sr = 0.708776 at core base) compared with modern seawater ((87)Sr/(86)Sr ≈ 0.70918), indicating advection of hydrothermal fluid through sediment at this site. Biogeochemical zonation of redox active species implies significant moderation of the hydrothermal fluid with in situ diagenetic processes. At Middle Sister, the central ridge of the Three Sisters complex located about 100 km southwest of Hook Ridge, small water column E(h) anomalies were detected but visual observations of the seafloor and pore fluid profiles provided no evidence of active hydrothermal circulation. At The Axe, located about 50 km southwest of Three Sisters, no water column anomalies in E(h), temperature or turbidity were detected. These observations demonstrate that the temperature anomalies observed in previous surveys are episodic features, and suggest that hydrothermal circulation in the Bransfield Strait is ephemeral in nature and therefore may not support vent biota.


Assuntos
Sedimentos Geológicos , Fontes Hidrotermais , Regiões Antárticas , Modelos Teóricos , Oxirredução
2.
PLoS Biol ; 10(1): e1001234, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22235194

RESUMO

Since the first discovery of deep-sea hydrothermal vents along the Galápagos Rift in 1977, numerous vent sites and endemic faunal assemblages have been found along mid-ocean ridges and back-arc basins at low to mid latitudes. These discoveries have suggested the existence of separate biogeographic provinces in the Atlantic and the North West Pacific, the existence of a province including the South West Pacific and Indian Ocean, and a separation of the North East Pacific, North East Pacific Rise, and South East Pacific Rise. The Southern Ocean is known to be a region of high deep-sea species diversity and centre of origin for the global deep-sea fauna. It has also been proposed as a gateway connecting hydrothermal vents in different oceans but is little explored because of extreme conditions. Since 2009 we have explored two segments of the East Scotia Ridge (ESR) in the Southern Ocean using a remotely operated vehicle. In each segment we located deep-sea hydrothermal vents hosting high-temperature black smokers up to 382.8°C and diffuse venting. The chemosynthetic ecosystems hosted by these vents are dominated by a new yeti crab (Kiwa n. sp.), stalked barnacles, limpets, peltospiroid gastropods, anemones, and a predatory sea star. Taxa abundant in vent ecosystems in other oceans, including polychaete worms (Siboglinidae), bathymodiolid mussels, and alvinocaridid shrimps, are absent from the ESR vents. These groups, except the Siboglinidae, possess planktotrophic larvae, rare in Antarctic marine invertebrates, suggesting that the environmental conditions of the Southern Ocean may act as a dispersal filter for vent taxa. Evidence from the distinctive fauna, the unique community structure, and multivariate analyses suggest that the Antarctic vent ecosystems represent a new vent biogeographic province. However, multivariate analyses of species present at the ESR and at other deep-sea hydrothermal vents globally indicate that vent biogeography is more complex than previously recognised.


Assuntos
Biodiversidade , Ecossistema , Fontes Hidrotermais , Água do Mar/química , Animais , Regiões Antárticas , Bactérias/classificação , Bactérias/genética , Bactérias/crescimento & desenvolvimento , Crustáceos/classificação , Crustáceos/genética , Crustáceos/crescimento & desenvolvimento , Decápodes/classificação , Decápodes/genética , Decápodes/crescimento & desenvolvimento , Complexo IV da Cadeia de Transporte de Elétrons/genética , Gastrópodes/classificação , Gastrópodes/genética , Gastrópodes/crescimento & desenvolvimento , Geografia , Sulfeto de Hidrogênio/metabolismo , Concentração de Íons de Hidrogênio , Dados de Sequência Molecular , Oceanos e Mares , Filogenia , RNA Ribossômico 16S/genética , RNA Ribossômico 18S/genética , RNA Ribossômico 28S/genética , Água do Mar/microbiologia , Análise de Sequência de DNA , Sódio/metabolismo , Especificidade da Espécie , Temperatura
3.
Science ; 320(5874): 336-40, 2008 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-18420926

RESUMO

Ocean acidification in response to rising atmospheric CO2 partial pressures is widely expected to reduce calcification by marine organisms. From the mid-Mesozoic, coccolithophores have been major calcium carbonate producers in the world's oceans, today accounting for about a third of the total marine CaCO3 production. Here, we present laboratory evidence that calcification and net primary production in the coccolithophore species Emiliania huxleyi are significantly increased by high CO2 partial pressures. Field evidence from the deep ocean is consistent with these laboratory conclusions, indicating that over the past 220 years there has been a 40% increase in average coccolith mass. Our findings show that coccolithophores are already responding and will probably continue to respond to rising atmospheric CO2 partial pressures, which has important implications for biogeochemical modeling of future oceans and climate.


Assuntos
Calcificação Fisiológica , Dióxido de Carbono , Eucariotos/fisiologia , Fitoplâncton/fisiologia , Atmosfera , Carbonato de Cálcio/análise , Eucariotos/crescimento & desenvolvimento , Sedimentos Geológicos/química , Concentração de Íons de Hidrogênio , Oceanos e Mares , Fotossíntese , Fitoplâncton/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...