Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Cell ; 36(2): 447-470, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-37820736

RESUMO

Plant nucleotide-binding leucine-rich repeat (NLRs) immune receptors directly or indirectly recognize pathogen-secreted effector molecules to initiate plant defense. Recognition of multiple pathogens by a single NLR is rare and usually occurs via monitoring for changes to host proteins; few characterized NLRs have been shown to recognize multiple effectors. The barley (Hordeum vulgare) NLR gene Mildew locus a (Mla) has undergone functional diversification, and the proteins encoded by different Mla alleles recognize host-adapted isolates of barley powdery mildew (Blumeria graminis f. sp. hordei [Bgh]). Here, we show that Mla3 also confers resistance to the rice blast fungus Magnaporthe oryzae in a dosage-dependent manner. Using a forward genetic screen, we discovered that the recognized effector from M. oryzae is Pathogenicity toward Weeping Lovegrass 2 (Pwl2), a host range determinant factor that prevents M. oryzae from infecting weeping lovegrass (Eragrostis curvula). Mla3 has therefore convergently evolved the capacity to recognize effectors from diverse pathogens.


Assuntos
Ascomicetos , Eragrostis , Hordeum , Magnaporthe , Virulência/genética , Hordeum/genética , Eragrostis/metabolismo , Plantas/metabolismo , Especificidade de Hospedeiro , Doenças das Plantas/microbiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
2.
Sci Adv ; 8(27): eabn7258, 2022 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-35857460

RESUMO

In the evolution of land plants, the plant immune system has experienced expansion in immune receptor and signaling pathways. Lineage-specific expansions have been observed in diverse gene families that are potentially involved in immunity but lack causal association. Here, we show that Rps8-mediated resistance in barley to the pathogen Puccinia striiformis f. sp. tritici (wheat stripe rust) is conferred by a genetic module: Pur1 and Exo70FX12, which are together necessary and sufficient. Pur1 encodes a leucine-rich repeat receptor kinase and is the ortholog of rice Xa21, and Exo70FX12 belongs to the Poales-specific Exo70FX clade. The Exo70FX clade emerged after the divergence of the Bromeliaceae and Poaceae and comprises from 2 to 75 members in sequenced grasses. These results demonstrate the requirement of a lineage-specific Exo70FX12 in Pur1-mediated immunity and suggest that the Exo70FX clade may have evolved a specialized role in receptor kinase signaling.

3.
Nat Commun ; 13(1): 1607, 2022 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-35338132

RESUMO

The wild relatives and progenitors of wheat have been widely used as sources of disease resistance (R) genes. Molecular identification and characterization of these R genes facilitates their manipulation and tracking in breeding programmes. Here, we develop a reference-quality genome assembly of the wild diploid wheat relative Aegilops sharonensis and use positional mapping, mutagenesis, RNA-Seq and transgenesis to identify the stem rust resistance gene Sr62, which has also been transferred to common wheat. This gene encodes a tandem kinase, homologues of which exist across multiple taxa in the plant kingdom. Stable Sr62 transgenic wheat lines show high levels of resistance against diverse isolates of the stem rust pathogen, highlighting the utility of Sr62 for deployment as part of a polygenic stack to maximize the durability of stem rust resistance.


Assuntos
Aegilops , Basidiomycota , Aegilops/genética , Basidiomycota/genética , Resistência à Doença/genética , Genes de Plantas/genética , Melhoramento Vegetal , Doenças das Plantas/genética , Triticum/genética
4.
Nat Commun ; 12(1): 6915, 2021 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-34824299

RESUMO

Crop losses caused by plant pathogens are a primary threat to stable food production. Stripe rust (Puccinia striiformis) is a fungal pathogen of cereal crops that causes significant, persistent yield loss. Stripe rust exhibits host species specificity, with lineages that have adapted to infect wheat and barley. While wheat stripe rust and barley stripe rust are commonly restricted to their corresponding hosts, the genes underlying this host specificity remain unknown. Here, we show that three resistance genes, Rps6, Rps7, and Rps8, contribute to immunity in barley to wheat stripe rust. Rps7 cosegregates with barley powdery mildew resistance at the Mla locus. Using transgenic complementation of different Mla alleles, we confirm allele-specific recognition of wheat stripe rust by Mla. Our results show that major resistance genes contribute to the host species specificity of wheat stripe rust on barley and that a shared genetic architecture underlies resistance to the adapted pathogen barley powdery mildew and non-adapted pathogen wheat stripe rust.


Assuntos
Hordeum/imunologia , Especificidade de Hospedeiro , Imunidade Vegetal , Proteínas de Plantas/imunologia , Adaptação Fisiológica , Alelos , Produtos Agrícolas/genética , Grão Comestível , Melhoramento Vegetal , Doenças das Plantas/imunologia , Puccinia , Receptores Imunológicos , Proteínas Ribossômicas , Triticum
5.
Nat Commun ; 11(1): 1123, 2020 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-32111840

RESUMO

Stem rust is an important disease of wheat that can be controlled using resistance genes. The gene SuSr-D1 identified in cultivar 'Canthatch' suppresses stem rust resistance. SuSr-D1 mutants are resistant to several races of stem rust that are virulent on wild-type plants. Here we identify SuSr-D1 by sequencing flow-sorted chromosomes, mutagenesis, and map-based cloning. The gene encodes Med15, a subunit of the Mediator Complex, a conserved protein complex in eukaryotes that regulates expression of protein-coding genes. Nonsense mutations in Med15b.D result in expression of stem rust resistance. Time-course RNAseq analysis show a significant reduction or complete loss of differential gene expression at 24 h post inoculation in med15b.D mutants, suggesting that transcriptional reprogramming at this time point is not required for immunity to stem rust. Suppression is a common phenomenon and this study provides novel insight into suppression of rust resistance in wheat.


Assuntos
Resistência à Doença/genética , Complexo Mediador/genética , Doenças das Plantas/genética , Triticum/genética , Basidiomycota/patogenicidade , Mapeamento Cromossômico , Cromossomos de Plantas/genética , Duplicação Gênica , Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genes de Plantas/genética , Mutação , Fenótipo , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Imunidade Vegetal/genética , Poaceae/classificação , Poaceae/genética , Triticum/imunologia , Triticum/microbiologia
6.
Nat Protoc ; 13(12): 2944-2963, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30446746

RESUMO

'Speed breeding' (SB) shortens the breeding cycle and accelerates crop research through rapid generation advancement. SB can be carried out in numerous ways, one of which involves extending the duration of plants' daily exposure to light, combined with early seed harvest, to cycle quickly from seed to seed, thereby reducing the generation times for some long-day (LD) or day-neutral crops. In this protocol, we present glasshouse and growth chamber-based SB approaches with supporting data from experimentation with several crops. We describe the conditions that promote the rapid growth of bread wheat, durum wheat, barley, oat, various Brassica species, chickpea, pea, grass pea, quinoa and Brachypodium distachyon. Points of flexibility within the protocols are highlighted, including how plant density can be increased to efficiently scale up plant numbers for single-seed descent (SSD). In addition, instructions are provided on how to perform SB on a small scale in a benchtop growth cabinet, enabling optimization of parameters at a low cost.


Assuntos
Avena/crescimento & desenvolvimento , Brachypodium/crescimento & desenvolvimento , Brassica/crescimento & desenvolvimento , Produtos Agrícolas/crescimento & desenvolvimento , Hordeum/crescimento & desenvolvimento , Melhoramento Vegetal/métodos , Triticum/crescimento & desenvolvimento , Melhoramento Vegetal/economia , Fatores de Tempo
7.
PLoS Genet ; 14(9): e1007637, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30265666

RESUMO

Multilayered defense responses ensure that plants are hosts to only a few adapted pathogens in the environment. The host range of a plant pathogen depends on its ability to fully overcome plant defense barriers, with failure at any single step sufficient to prevent life cycle completion of the pathogen. Puccinia striiformis, the causal agent of stripe rust (=yellow rust), is an agronomically important obligate biotrophic fungal pathogen of wheat and barley. It is generally unable to complete its life cycle on the non-adapted wild grass species Brachypodium distachyon, but natural variation exists for the degree of hyphal colonization by Puccinia striiformis. Using three B. distachyon mapping populations, we identified genetic loci conferring colonization resistance to wheat-adapted and barley-adapted isolates of P. striiformis. We observed a genetic architecture composed of two major effect QTLs (Yrr1 and Yrr3) restricting the colonization of P. striiformis. Isolate specificity was observed for Yrr1, whereas Yrr3 was effective against all tested P. striiformis isolates. Plant immune receptors of the nucleotide binding, leucine-rich repeat (NB-LRR) encoding gene family are present at the Yrr3 locus, whereas genes of this family were not identified at the Yrr1 locus. While it has been proposed that resistance to adapted and non-adapted pathogens are inherently different, the observation of (1) a simple genetic architecture of colonization resistance, (2) isolate specificity of major and minor effect QTLs, and (3) NB-LRR encoding genes at the Yrr3 locus suggest that factors associated with resistance to adapted pathogens are also critical for non-adapted pathogens.


Assuntos
Basidiomycota/patogenicidade , Brachypodium/genética , Resistência à Doença/genética , Especificidade de Hospedeiro , Doenças das Plantas/genética , Brachypodium/imunologia , Brachypodium/microbiologia , Mapeamento Cromossômico , Hordeum/microbiologia , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Proteínas de Plantas/genética , Proteínas de Plantas/imunologia , Locos de Características Quantitativas/genética , Triticum/microbiologia
8.
Theor Appl Genet ; 130(6): 1207-1222, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28275817

RESUMO

KEY MESSAGE: We identified two novel wheat stem rust resistance genes, Sr-1644-1Sh and Sr-1644-5Sh in Aegilops sharonensis that are effective against widely virulent African races of the wheat stem rust pathogen. Stem rust is one of the most important diseases of wheat in the world. When single stem rust resistance (Sr) genes are deployed in wheat, they are often rapidly overcome by the pathogen. To this end, we initiated a search for novel sources of resistance in diverse wheat relatives and identified the wild goatgrass species Aegilops sharonesis (Sharon goatgrass) as a rich reservoir of resistance to wheat stem rust. The objectives of this study were to discover and map novel Sr genes in Ae. sharonensis and to explore the possibility of identifying new Sr genes by genome-wide association study (GWAS). We developed two biparental populations between resistant and susceptible accessions of Ae. sharonensis and performed QTL and linkage analysis. In an F6 recombinant inbred line and an F2 population, two genes were identified that mapped to the short arm of chromosome 1Ssh, designated as Sr-1644-1Sh, and the long arm of chromosome 5Ssh, designated as Sr-1644-5Sh. The gene Sr-1644-1Sh confers a high level of resistance to race TTKSK (a member of the Ug99 race group), while the gene Sr-1644-5Sh conditions strong resistance to TRTTF, another widely virulent race found in Yemen. Additionally, GWAS was conducted on 125 diverse Ae. sharonensis accessions for stem rust resistance. The gene Sr-1644-1Sh was detected by GWAS, while Sr-1644-5Sh was not detected, indicating that the effectiveness of GWAS might be affected by marker density, population structure, low allele frequency and other factors.


Assuntos
Resistência à Doença/genética , Genes de Plantas , Doenças das Plantas/genética , Poaceae/genética , Basidiomycota , Mapeamento Cromossômico , Estudos de Associação Genética , Ligação Genética , Modelos Lineares , Desequilíbrio de Ligação , Modelos Genéticos , Fenótipo , Doenças das Plantas/microbiologia , Poaceae/microbiologia , Locos de Características Quantitativas
9.
Plant Physiol ; 173(1): 256-268, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27650449

RESUMO

The domestication of plants is underscored by the selection of agriculturally favorable developmental traits, including flowering time, which resulted in the creation of varieties with altered growth habits. Research into the pathways underlying these growth habits in cereals has highlighted the role of three main flowering regulators: VERNALIZATION1 (VRN1), VRN2, and FLOWERING LOCUS T (FT). Previous reverse genetic studies suggested that the roles of VRN1 and FT are conserved in Brachypodium distachyon yet identified considerable ambiguity surrounding the role of VRN2 To investigate the natural diversity governing flowering time pathways in a nondomesticated grass, the reference B. distachyon accession Bd21 was crossed with the vernalization-dependent accession ABR6. Resequencing of ABR6 allowed the creation of a single-nucleotide polymorphism-based genetic map at the F4 stage of the mapping population. Flowering time was evaluated in F4:5 families in five environmental conditions, and three major loci were found to govern flowering time. Interestingly, two of these loci colocalize with the B. distachyon homologs of the major flowering pathway genes VRN2 and FT, whereas no linkage was observed at VRN1 Characterization of these candidates identified sequence and expression variation between the two parental genotypes, which may explain the contrasting growth habits. However, the identification of additional quantitative trait loci suggests that greater complexity underlies flowering time in this nondomesticated system. Studying the interaction of these regulators in B. distachyon provides insights into the evolutionary context of flowering time regulation in the Poaceae as well as elucidates the way humans have utilized the natural variation present in grasses to create modern temperate cereals.


Assuntos
Brachypodium/genética , Flores/genética , Flores/fisiologia , Variação Genética , Locos de Características Quantitativas/genética , Mapeamento Cromossômico , Cruzamentos Genéticos , Ecótipo , Regulação da Expressão Gênica de Plantas , Ligação Genética , Genótipo , Geografia , Fenótipo , Folhas de Planta/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fatores de Tempo
11.
Theor Appl Genet ; 129(4): 831-843, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26754419

RESUMO

KEY MESSAGE: We uncouple host and nonhost resistance in barley to Puccinia striiformis ff. spp. hordei and tritici . We isolate, fine map, and physically anchor Rps6 to chromosome 7H in barley. A plant may be considered a nonhost of a pathogen if all known genotypes of a plant species are resistant to all known isolates of a pathogen species. However, if a small number of genotypes are susceptible to some known isolates of a pathogen species this plant may be considered an intermediate host. Barley (Hordeum vulgare) is an intermediate host for Puccinia striiformis f. sp. tritici (Pst), the causal agent of wheat stripe rust. We wanted to understand the genetic architecture underlying resistance to Pst and to determine whether any overlap exists with resistance to the host pathogen, Puccinia striiformis f. sp. hordei (Psh). We mapped Pst resistance to chromosome 7H and show that host and intermediate host resistance is genetically uncoupled. Therefore, we designate this resistance locus Rps6. We used phenotypic and genotypic selection on F2:3 families to isolate Rps6 and fine mapped the locus to a 0.1 cM region. Anchoring of the Rps6 locus to the barley physical map placed the region on a single fingerprinted contig spanning a physical region of 267 kb. Efforts are now underway to sequence the minimal tiling path and to delimit the physical region harboring Rps6. This will facilitate additional marker development and permit identification of candidate genes in the region.


Assuntos
Resistência à Doença/genética , Genes de Plantas , Hordeum/genética , Doenças das Plantas/genética , Análise de Variância , Basidiomycota , Mapeamento Cromossômico , DNA de Plantas/genética , Marcadores Genéticos , Hordeum/microbiologia , Fenótipo , Doenças das Plantas/microbiologia , Locos de Características Quantitativas , Análise de Sequência de DNA , Transcriptoma
12.
Front Plant Sci ; 6: 876, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26579142

RESUMO

Nonhost resistance is often conceptualized as a qualitative separation from host resistance. Classification into these two states is generally facile, as they fail to fully describe the range of states that exist in the transition from host to nonhost. This poses a problem when studying pathosystems that cannot be classified as either host or nonhost due to their intermediate status relative to these two extremes. In this study, we investigate the efficacy of the Poaceae-stripe rust (Puccinia striiformis Westend.) interaction for describing the host-nonhost landscape. First, using barley (Hordeum vulgare L.) and Brachypodium distachyon (L.) P. Beauv. We observed that macroscopic symptoms of chlorosis and leaf browning were associated with hyphal colonization by P. striiformis f. sp. tritici, respectively. This prompted us to adapt a protocol for visualizing fungal structures into a phenotypic assay that estimates the percent of leaf colonized. Use of this assay in intermediate host and intermediate nonhost systems found the frequency of infection decreases with evolutionary divergence from the host species. Similarly, we observed that the pathogen's ability to complete its life cycle decreased faster than its ability to colonize leaf tissue, with no incidence of pustules observed in the intermediate nonhost system and significantly reduced pustule formation in the intermediate host system as compared to the host system, barley-P. striiformis f. sp. hordei. By leveraging the stripe rust pathosystem in conjunction with macroscopic and microscopic phenotypic assays, we now hope to dissect the genetic architecture of intermediate host and intermediate nonhost resistance using structured populations in barley and B. distachyon.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...