Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochem Cell Biol ; 94(2): 188-96, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26928052

RESUMO

Autophagy is an evolutionarily conserved mechanism for degrading long-lived or malfunctioning proteins and organelles, such as those resulting from oxidative stress. Several publications have demonstrated the importance of the autophagy process in the pathophysiology of dry age-related macular degeneration (AMD). Still, the mechanism underlying this process and its involvement in dry AMD are not fully characterized. Investigating the autophagy process in retinal pigment epithelial (RPE) cells, we identified transforming growth factor ß activated kinase 1 (TAK1) as a key player in the process. We found increased TAK1 phosphorylation in ARPE-19 and D407 cells treated with different inducers of autophagy, such as oxidative stress and rapamycin. Moreover, utilizing TAK1 specific inhibitor prior to oxidative stress or rapamycin treatment, we found significant reduction in LC3A/B-II expression. These results point at the involvement of TAK1 in the regulation of autophagy in RPE cells. This study suggests that aberrant activity of this kinase impairs autophagy and subsequently leads to alterations in the vitality of RPE cells. Proper activity of TAK1 may be essential for efficient autophagy, and crucial for the ability of RPE cells to respond to stress and dispose of damaged organelles, thus preventing or delaying retinal pathologies.


Assuntos
Autofagia , MAP Quinase Quinase Quinases/metabolismo , Epitélio Pigmentado da Retina/metabolismo , Células Cultivadas , Humanos , MAP Quinase Quinase Quinases/antagonistas & inibidores , Epitélio Pigmentado da Retina/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...