Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Lipid Res ; 56(9): 1669-78, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26203075

RESUMO

We previously reported that reducing the expression of cholesteryl ester transfer protein (CETP) disrupts cholesterol homeostasis in SW872 cells and causes an ∼50% reduction in TG. The causes of this reduced TG content, investigated here, could not be attributed to changes in the differentiation status of CETP-deficient cells, nor was there evidence of endoplasmic reticulum (ER) stress. In short-term studies, the total flux of oleate through the TG biosynthetic pathway was not altered in CETP-deficient cells, although mRNA levels of some pathway enzymes were different. However, the conversion of diglyceride (DG) to TG was impaired. In longer-term studies, newly synthesized TG was not effectively transported to lipid droplets, yet this lipid did not accumulate in the ER, apparently due to elevated lipase activity in this organelle. DG, shown to be a novel CETP substrate, was also inefficiently transferred to lipid droplets. This may reduce TG synthesis on droplets by resident diacylglycerol acyltransferase. Overall, these data suggest that the decreased TG content of CETP-deficient cells arises from the reduced conversion of DG to TG in the ER and/or on the lipid droplet surface, and enhanced TG degradation in the ER due to its ineffective transport from this organelle.


Assuntos
Proteínas de Transferência de Ésteres de Colesterol/metabolismo , Colesterol/metabolismo , Retículo Endoplasmático/metabolismo , Triglicerídeos/biossíntese , Linhagem Celular , Colesterol/biossíntese , Proteínas de Transferência de Ésteres de Colesterol/deficiência , Proteínas de Transferência de Ésteres de Colesterol/genética , Diglicerídeos/metabolismo , Estresse do Retículo Endoplasmático/genética , Humanos , Gotículas Lipídicas/metabolismo , Erros Inatos do Metabolismo Lipídico/genética , Erros Inatos do Metabolismo Lipídico/metabolismo , RNA Mensageiro/biossíntese , Triglicerídeos/metabolismo
2.
J Lipid Res ; 56(3): 515-525, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25593327

RESUMO

Cells produce two cholesteryl ester transfer protein (CETP) isoforms, full-length and a shorter variant produced by alternative splicing. Blocking synthesis of both isoforms disrupts lipid metabolism and storage. To further define the role of CETP in cellular lipid metabolism, we stably overexpressed full-length CETP in SW872 cells. These CETP(+) cells had several-fold higher intracellular CETP and accumulated 50% less TG due to a 26% decrease in TG synthesis and 2.5-fold higher TG turnover rate. Reduced TG synthesis was due to decreased fatty acid uptake and impaired conversion of diglyceride to TG even though diacylglycerol acyltransferase activity was normal. Sterol-regulatory element binding protein 1 mRNA levels were normal, and although PPARγ expression was reduced, the expression of several of its target genes including adipocyte triglyceride lipase, FASN, and APOE was normal. CETP(+) cells contained smaller lipid droplets, consistent with their higher levels of perilipin protein family (PLIN) 3 compared with PLIN1 and PLIN2. Intracellular CETP was mostly associated with the endoplasmic reticulum, although CETP near lipid droplets poorly colocalized with this membrane. A small pool of CETP resided in the cytoplasm, and a subfraction coisolated with lipid droplets. These data show that overexpression of full-length CETP disrupts lipid homeostasis resulting in the formation of smaller, more metabolically active lipid droplets.


Assuntos
Proteínas de Transferência de Ésteres de Colesterol/metabolismo , Citoplasma/metabolismo , Metabolismo dos Lipídeos/fisiologia , Triglicerídeos/metabolismo , Apolipoproteínas E/biossíntese , Apolipoproteínas E/genética , Linhagem Celular Tumoral , Proteínas de Transferência de Ésteres de Colesterol/genética , Citoplasma/genética , Ácido Graxo Sintase Tipo I/genética , Ácido Graxo Sintase Tipo I/metabolismo , Regulação da Expressão Gênica/fisiologia , Humanos , PPAR gama/biossíntese , PPAR gama/genética , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Triglicerídeos/genética
3.
Mol Biol Cell ; 24(21): 3309-25, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24025716

RESUMO

Niemann-Pick disease type C (NPC) is caused by mutations in NPC1 or NPC2, which coordinate egress of low-density-lipoprotein (LDL)-cholesterol from late endosomes. We previously reported that the adenovirus-encoded protein RIDα rescues the cholesterol storage phenotype in NPC1-mutant fibroblasts. We show here that RIDα reconstitutes deficient endosome-to-endoplasmic reticulum (ER) transport, allowing excess LDL-cholesterol to be esterified by acyl-CoA:cholesterol acyltransferase and stored in lipid droplets (LDs) in NPC1-deficient cells. Furthermore, the RIDα pathway is regulated by the oxysterol-binding protein ORP1L. Studies have classified ORP1L as a sterol sensor involved in LE positioning downstream of GTP-Rab7. Our data, however, suggest that ORP1L may play a role in transport of LDL-cholesterol to a specific ER pool designated for LD formation. In contrast to NPC1, which is dispensable, the RIDα/ORP1L-dependent route requires functional NPC2. Although NPC1/NPC2 constitutes the major pathway, therapies that amplify minor egress routes for LDL-cholesterol could significantly improve clinical management of patients with loss-of-function NPC1 mutations. The molecular identity of putative alternative pathways, however, is poorly characterized. We propose RIDα as a model system for understanding physiological egress routes that use ORP1L to activate ER feedback responses involved in LD formation.


Assuntos
Proteínas E3 de Adenovirus/metabolismo , Proteínas de Transporte/metabolismo , Grânulos Citoplasmáticos/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteínas de Membrana/metabolismo , Receptores de Esteroides/metabolismo , Proteínas E3 de Adenovirus/genética , Animais , Transporte Biológico/genética , Células CHO , Proteínas de Transporte/genética , Células Cultivadas , LDL-Colesterol/metabolismo , Cricetinae , Cricetulus , Retículo Endoplasmático/metabolismo , Endossomos/metabolismo , Esterificação , Fibroblastos/metabolismo , Fibroblastos/patologia , Glicoproteínas/genética , Glicoproteínas/metabolismo , Células HEK293 , Humanos , Immunoblotting , Peptídeos e Proteínas de Sinalização Intracelular , Metabolismo dos Lipídeos , Glicoproteínas de Membrana/genética , Proteínas de Membrana/genética , Microscopia Confocal , Mutação , Proteína C1 de Niemann-Pick , Doenças de Niemann-Pick/genética , Doenças de Niemann-Pick/metabolismo , Doenças de Niemann-Pick/patologia , Interferência de RNA , Receptores de Esteroides/genética , Transdução de Sinais , Proteínas de Transporte Vesicular
4.
J Lipid Res ; 52(12): 2262-2271, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21937674

RESUMO

Lipid transfer inhibitor protein (LTIP) exists in both active and inactive forms. Incubation (37°C) of plasma causes LTIP to transfer from a 470 kDa inactive complex to LDL where it is active. Here, we investigate the mechanisms underlying this movement. Inhibiting LCAT or cholesteryl ester transfer protein (CETP) reduced incubation-induced LTIP translocation by 40-50%. Blocking both LCAT and CETP completely prevented LTIP movement. Under appropriate conditions, either factor alone could drive maximum LTIP transfer to LDL. These data suggest that chemical modification of LDL, the 470 kDa complex, or both facilitate LTIP movement. To test this, LDL and the 470 kDa fraction were separately premodified by CETP and/or LCAT activity. Modification of the 470 kDa fraction had no effect on subsequent LTIP movement to native LDL. Premodification of LDL, however, induced spontaneous LTIP movement from the native 470 kDa particle to LDL. This transfer depended on the extent of LDL modification and correlated negatively with changes in the LDL phospholipid + cholesterol-to-cholesteryl ester + triglyceride ratio. We conclude that LTIP translocation is dependent on LDL lipid composition, not on its release from the inactive complex. Compositional changes that reduce the surface-to-core lipid ratio of LDL promote LTIP binding and activation.


Assuntos
Apolipoproteínas/metabolismo , Lipoproteínas LDL/química , Lipoproteínas LDL/metabolismo , Proteínas de Transferência de Ésteres de Colesterol/metabolismo , Humanos , Peso Molecular , Fosfatidilcolina-Esterol O-Aciltransferase/metabolismo , Transporte Proteico
5.
J Lipid Res ; 49(7): 1529-37, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18369235

RESUMO

Lipid transfer inhibitor protein (LTIP) is a physiologic regulator of cholesteryl ester transfer protein (CETP) function. We previously reported that LTIP activity is localized to LDL, consistent with its greater inhibitory activity on this lipoprotein. With a recently described immunoassay for LTIP, we investigated whether LTIP mass is similarly distributed. Plasma fractionated by gel filtration chromatography revealed two LTIP protein peaks, one coeluting with LDL, and another of approximately 470 kDa. The 470 kDa LTIP complex had a density of 1.134 g/ml, indicating approximately 50% lipid content, and contained apolipoprotein A-I. By mass spectrometry, partially purified 470 kDa LTIP also contains apolipoproteins C-II, D, E, J, and paraoxonase 1. Unlike LDL-associated LTIP, the 470 kDa LTIP complex does not inhibit CETP activity. In normolipidemic subjects, approximately 25% of LTIP is in the LDL-associated, active form. In hypercholesterolemia,this increases to 50%, suggesting that lipoprotein composition may influence the status of LTIP activity. Incubation (37 degrees C) of normolipidemic plasma increased active, LDL-associated LTIP up to 3-fold at the expense of the inactive pool. Paraoxon inhibited this shift by 50%. Overall, these studies show that LTIP activity is controlled by its reversible incorporation into an inactive complex. This may provide for short-term fine-tuning of lipoprotein remodeling mediated by CETP.


Assuntos
Apolipoproteínas/metabolismo , Proteínas de Transferência de Ésteres de Colesterol/metabolismo , LDL-Colesterol/sangue , Humanos , Peso Molecular , Ligação Proteica
6.
J Lipid Res ; 49(1): 127-35, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17901467

RESUMO

Lipid transfer inhibitor protein (LTIP) is an important regulator of cholesteryl ester transfer protein function. We report the development of an immunoassay for LTIP and its use to quantify LTIP in plasma of varying lipid contents. A rabbit antibody against bacterially produced recombinant LTIP detected two LTIP isoforms in plasma differing in carbohydrate content. This antibody was used in a competitive, enzyme-linked immunoassay that uses partially purified LTIP bound to microtiter plates. To optimize LTIP immunoreactivity, plasma samples required preincubation in 1% Tween-20 and 0.5% Nonidet P-40. In normolipidemic plasma, LTIP averaged 83.5 microg/ml. LTIP was 31% higher in males than in females. LTIP was positively associated with HDL cholesterol in normolipidemic males but not in females. In hypertriglyceridemic males, LTIP was only 56% of control values, whereas in hypertriglyceridemic females, LTIP tended to increase. Additionally, in males with normal cholesterol and triglyceride (TG) < or = 200 mg/dl, LTIP varied inversely with plasma TG. Overall, we have confirmed the negative association between plasma TG levels and LTIP previously suggested by a small data set, but now we demonstrate that this effect is seen only in males. The mechanisms underlying this gender-specific response to TG, and why LTIP and HDL levels correlate in males but not in females, remain to be determined.


Assuntos
Apolipoproteínas/sangue , Proteínas de Transferência de Ésteres de Colesterol/sangue , Hipercolesterolemia/sangue , Hipertrigliceridemia/sangue , Idoso , HDL-Colesterol/sangue , Ensaio de Imunoadsorção Enzimática/métodos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Proteínas Recombinantes , Triglicerídeos/sangue
7.
Atherosclerosis ; 192(1): 100-7, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-16905138

RESUMO

Cholesteryl ester transfer protein (CETP) regulates human lipoprotein metabolism. Because reducing CETP increases plasma HDL, CETP inhibitors are currently being investigated for their pharmacologic value. However, complete CETP deficiency may have undesirable consequences. In contrast, based on previous studies with purified components, we hypothesized that partial CETP inhibition, which will still elevate HDL, may induce beneficial changes in plasma lipid metabolism. To address this, CETP activity in human plasma was variably inhibited with monoclonal antibody. In control plasma, VLDL to LDL lipid transfer was >2-fold higher than to HDL(3) with lipid transfer to HDL(2) intermediate. However, individual lipid transfer events were uniquely sensitive to CETP suppression such that when CETP activity was inhibited by 60%, lipid transfer from VLDL to LDL, HDL(2) and HDL(3) were equal. The ratio of lipid transfers to LDL versus HDL declined linearly with CETP inhibition. In mass lipid transfer experiments, 25-50% inhibition of CETP significantly reduced lipid flux between VLDL and LDL but minimally affected cholesteryl ester (CE) loss from HDL. Complete CETP inhibition did not reduce cholesterol esterification rates but completely blocked the delivery of new CE to VLDL, whereas, 50% inhibition of CETP reduced this CE flux to VLDL by <20%. Thus, inhibition of CETP by

Assuntos
Anticorpos Bloqueadores/farmacologia , Transporte Biológico Ativo/efeitos dos fármacos , Proteínas de Transferência de Ésteres de Colesterol/efeitos dos fármacos , Metabolismo dos Lipídeos/efeitos dos fármacos , Lipoproteínas HDL2/metabolismo , Lipoproteínas HDL3/metabolismo , Linhagem Celular , Esterificação/efeitos dos fármacos , Humanos , Lipoproteínas HDL2/efeitos dos fármacos , Lipoproteínas HDL3/efeitos dos fármacos , Lipoproteínas LDL/efeitos dos fármacos , Lipoproteínas LDL/metabolismo , Lipoproteínas VLDL/metabolismo , Macrófagos/metabolismo , Fosfatidilcolina-Esterol O-Aciltransferase , Plasma/enzimologia
8.
J Lipid Res ; 47(1): 51-8, 2006 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16215259

RESUMO

The multidrug resistance P-glycoprotein (P-gp) was recently proposed to redistribute cholesterol in the plasma membrane, suggesting that P-gp could modulate cholesterol efflux to cholesterol acceptors. To address this hypothesis and to reevaluate the role of P-gp in cholesterol homeostasis, we first analyzed the role of P-gp expression on cholesterol efflux in P-gp stably transfected drug-selected LLC-MDR1 cells. Cholesterol efflux to methyl-beta-cyclodextrin (CD) was 4-fold higher in LLC-MDR1 cells compared with control LLC-PK1 cells, indicating that the accessible pool of plasma membrane cholesterol was increased by P-gp expression. However, using the P-gp-inducible cells lines HeLa MDR-Tet and 77.1 MDR-Tet, cholesterol efflux to CD, apolipoprotein A-I, or HDL was not associated with P-gp expression. In addition, we did not observe any effect of P-gp expression on cellular free and esterified cholesterol content, cholesteryl ester uptake from LDL and HDL particles, or acyl-CoA:cholesterol acyltransferase activity. Therefore, we conclude that P-gp expression does not play a major role in cholesterol homeostasis in P-gp-inducible cells and that the effects of P-gp on cholesterol homeostasis previously described in drug-selected cells might result from non-P-gp pathways that were also induced by selection for drug resistance.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Colesterol/metabolismo , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/deficiência , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/genética , Animais , Linhagem Celular , Células HeLa , Homeostase , Humanos , Células LLC-PK1 , Lipídeos de Membrana/metabolismo , Camundongos , Camundongos Knockout , Regiões Promotoras Genéticas/efeitos dos fármacos , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Suínos , Tetraciclina/farmacologia , Transfecção
9.
J Lipid Res ; 44(12): 2287-96, 2003 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-12951364

RESUMO

Lipoprotein surface charge influences cholesteryl ester transfer protein (CETP) activity and its association with lipoproteins; however, the relationship between these events is not clear. Additionally, although CETP and its regulator, lipid transfer inhibitor protein (LTIP), bind to lipoproteins, it is not known how the charge density of lipoprotein protein and lipid domains influences these factors. Here, the electronegativity of the protein (by acetylation) and surface lipid (oleate addition) domains of LDL were modified. LDL-only lipid transfer assays measured changes in CETP and LTIP activities. CETP activity was stimulated by <10 microM oleate but completely suppressed by >20 microM. The same electronegative potential induced by acetylation mildly stimulated CETP. Modification-induced enhanced binding of CETP did not correlate with CETP activity. LTIP activity was completely blocked by approximately 10 microM oleate but only mildly suppressed by acetylation. LTIP binding to LDL was not decreased by oleate. Thus, the negative charge of LDL surface lipids, but not protein, is an important regulator of CETP and LTIP activity. Altered binding could not explain changes in CETP activity, suggesting that the extent of CETP binding is not normally rate limiting to its activity. Physiologic and pathophysiologic conditions that modify the negative charge of lipoprotein surface lipids will suppress LTIP activity first, followed by CETP.


Assuntos
Proteínas de Transporte/metabolismo , Glicoproteínas , Lipoproteínas HDL/química , Lipoproteínas HDL/metabolismo , Proteínas de Transferência de Ésteres de Colesterol , Humanos , Cinética , Estrutura Terciária de Proteína , Eletricidade Estática
10.
J Lipid Res ; 44(7): 1364-72, 2003 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-12730298

RESUMO

Cholesteryl ester transfer protein (CETP) activity is regulated, in part, by lipoprotein composition. We previously demonstrated that CETP activity follows saturation kinetics as cholesteryl ester (CE) levels in the phospholipid surface of donor particles are increased. We propose here that the plateau of CETP activity occurs because the surface concentration of CE in the acceptor becomes rate limiting. This hypothesis was tested in CETP assays between synthetic liposomes whose CE content was varied independently. As donor CE increased, CETP activity followed saturable kinetics, but the slope of the first-order portion of the curve and the maximum achievable CE transfer rate were linearly related to the acceptor's surface CE concentration. These findings, plus studies with free cholesterol-modified LDL, strongly suggest that CE-rich donor liposomes can measure the CETP-accessible CE in acceptor lipoproteins. CETP activity from CE-rich liposomes to multiple control LDLs ranged 1.8-fold despite equivalent CETP binding capacity, suggesting that LDLs vary widely in their capacity to present CE to CETP. Thus, CETP activity depends on the surface availability of substrate lipids in the donor and acceptor. Donor liposomes with high CE content can be used to assess how subtle changes in composition alter the substrate potential of plasma lipoproteins.


Assuntos
Proteínas de Transporte/fisiologia , Ésteres do Colesterol/química , Glicoproteínas , Lipoproteínas/metabolismo , Lipossomos/metabolismo , Sítios de Ligação , Cardiolipinas/química , Proteínas de Transporte/metabolismo , Proteínas de Transferência de Ésteres de Colesterol , Ésteres do Colesterol/metabolismo , Relação Dose-Resposta a Droga , Humanos , Cinética , Lipídeos , Lipoproteínas/sangue , Lipoproteínas LDL/química , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...