Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
1.
bioRxiv ; 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38586026

RESUMO

Molecular control of recovery after exercise in muscle is temporally dynamic. A time course of biopsies around resistance exercise (RE) combined with -omics is necessary to better comprehend the molecular contributions of skeletal muscle adaptation in humans. Vastus lateralis biopsies before and 30 minutes, 3-, 8-, and 24-hours after acute RE were collected. A time-point matched biopsy-only group was also included. RNA-sequencing defined the transcriptome while DNA methylomics and computational approaches complemented these data. The post-RE time course revealed: 1) DNA methylome responses at 30 minutes corresponded to upregulated genes at 3 hours, 2) a burst of translation- and transcription-initiation factor-coding transcripts occurred between 3 and 8 hours, 3) global gene expression peaked at 8 hours, 4) ribosome-related genes dominated the mRNA landscape between 8 and 24 hours, 5) methylation-regulated MYC was a highly influential transcription factor throughout the 24-hour recovery and played a primary role in ribosome-related mRNA levels between 8 and 24 hours. The influence of MYC in human muscle adaptation was strengthened by transcriptome information from acute MYC overexpression in mouse muscle. To test whether MYC was sufficient for hypertrophy, we generated a muscle fiber-specific doxycycline inducible model of pulsatile MYC induction. Periodic 48-hour pulses of MYC over 4 weeks resulted in higher muscle mass and fiber size in the soleus of adult female mice. Collectively, we present a temporally resolved resource for understanding molecular adaptations to RE in muscle and reveal MYC as a regulator of RE-induced mRNA levels and hypertrophy.

2.
bioRxiv ; 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38645227

RESUMO

Objectives: A high proportion of women with advanced epithelial ovarian cancer (EOC) experience weakness and cachexia. This relationship is associated with increased morbidity and mortality. EOC is the most lethal gynecological cancer, yet no preclinical cachexia model has demonstrated the combined hallmark features of metastasis, ascites development, muscle loss and weakness in adult immunocompetent mice. Methods: Here, we evaluated a new model of ovarian cancer-induced cachexia with the advantages of inducing cancer in adult immunocompetent C57BL/6J mice through orthotopic injections of EOC cells in the ovarian bursa. We characterized the development of metastasis, ascites, muscle atrophy, muscle weakness, markers of inflammation, and mitochondrial stress in the tibialis anterior (TA) and diaphragm ~45, ~75 and ~90 days after EOC injection. Results: Primary ovarian tumour sizes were progressively larger at each time point while robust metastasis, ascites development, and reductions in body, fat and muscle weights occurred by 90 Days. There were no changes in certain inflammatory (TNFα), atrogene (MURF1 and Atrogin) or GDF15 markers within both muscles whereas IL-6 was increased at 45 and 90 Day groups in the diaphragm. TA weakness in 45 Day preceded atrophy and metastasis that were observed later (75 and 90 Day, respectively). The diaphragm demonstrated both weakness and atrophy in 45 Day. In both muscles, this pre-metastatic muscle weakness corresponded with considerable reprogramming of gene pathways related to mitochondrial bioenergetics as well as reduced functional measures of mitochondrial pyruvate oxidation and creatine-dependent ADP/ATP cycling as well as increased reactive oxygen species emission (hydrogen peroxide). Remarkably, muscle force per unit mass at 90 days was partially restored in the TA despite the presence of atrophy and metastasis. In contrast, the diaphragm demonstrated progressive weakness. At this advanced stage, mitochondrial pyruvate oxidation in both muscles exceeded control mice suggesting an apparent metabolic super-compensation corresponding with restored indices of creatine-dependent adenylate cycling. Conclusion: This mouse model demonstrates the concurrent development of cachexia and metastasis that occurs in women with EOC. The model provides physiologically relevant advantages of inducing tumour development within the ovarian bursa in immunocompetent adult mice. Moreover, the model reveals that muscle weakness in both TA and diaphragm precedes metastasis while weakness also precedes atrophy in the TA. An underlying mitochondrial bioenergetic stress corresponded with this early weakness. Collectively, these discoveries can direct new research towards the development of therapies that target pre-atrophy and pre-metastatic weakness during EOC in addition to therapies targeting cachexia.

3.
Am J Physiol Cell Physiol ; 326(3): C768-C783, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38314723

RESUMO

Arrestin domain containing 2 and 3 (Arrdc2/3) are genes whose mRNA contents are decreased in young skeletal muscle following mechanical overload. Arrdc3 is linked to the regulation of signaling pathways in nonmuscle cells that could influence skeletal muscle size. Despite a similar amino acid sequence, Arrdc2 function remains undefined. The purpose of this study was to further explore the relationship of Arrdc2/Arrdc3 expression with changes in mechanical load in young and aged muscle and define the effect of Arrdc2/3 expression on C2C12 myotube diameter. In young and aged mice, mechanical load was decreased using hindlimb suspension whereas mechanical load was increased by reloading previously unloaded muscle or inducing high-force contractions. Arrdc2 and Arrdc3 mRNAs were overexpressed in C2C12 myotubes using adenoviruses. Myotube diameter was determined 48-h posttransfection, and RNA sequencing was performed on those samples. Arrdc2 and Arrdc3 mRNA content was higher in the unloaded muscle within 1 day of disuse and remained higher up through 10 days. The induction of Arrdc2 mRNA was more pronounced in aged muscle than young muscle in response to unloading. Reloading previously unloaded muscle of young and aged mice restored Arrdc2 and Arrdc3 levels to ambulatory levels. Increasing mechanical load beyond normal ambulatory levels lowered Arrdc2 mRNA, but not Arrdc3 mRNA, in young and aged muscle. Arrdc2 overexpression only was sufficient to lower myotube diameter in C2C12 cells in part by altering the transcriptome favoring muscle atrophy. These data are consistent with Arrdc2 contributing to disuse atrophy, particularly in aged muscle.NEW & NOTEWORTHY We establish Arrdc2 as a novel mechanosensitive gene highly induced in response to mechanical unloading, particularly in aged muscle. Arrdc2 induction in C2C12 myotubes is sufficient to produce thinner myotubes and a transcriptional landscape consistent with muscle atrophy and disuse.


Assuntos
Fibras Musculares Esqueléticas , Transtornos Musculares Atróficos , Animais , Camundongos , Músculo Esquelético , Atrofia Muscular/genética , Envelhecimento/genética , RNA Mensageiro/genética , Arrestinas
4.
Nutrients ; 15(21)2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-37960223

RESUMO

Cancer cachexia (CC) is a multifactorial wasting syndrome characterized by a significant loss in lean and/or fat mass and represents a leading cause of mortality in cancer patients. Nutraceutical treatments have been proposed as a potential treatment strategy to mitigate cachexia-induced muscle wasting. However, contradictory findings warrant further investigation. The purpose of this study was to determine the effects of leucine supplementation on skeletal muscle in male and female ApcMin/+ mice (APC). APC mice and their wild-type (WT) littermates were given normal drinking water or 1.5% leucine-supplemented water (n = 4-10/group/sex). We measured the gene expression of regulators of inflammation, protein balance, and myogenesis. Leucine treatment lowered survival rates, body mass, and muscle mass in males, while in females, it had no effect on body or muscle mass. Leucine treatment altered inflammatory gene expression by lowering Il1b 87% in the APC group and decreasing Tnfa 92% in both WT and APC males, while it had no effect in females (p < 0.05). Leucine had no effect on regulators of protein balance and myogenesis in either sex. We demonstrated that leucine exacerbates moribundity in males and is not sufficient for mitigating muscle or fat loss during CC in either sex in the ApcMin/+ mouse.


Assuntos
Caquexia , Neoplasias Colorretais , Humanos , Camundongos , Masculino , Feminino , Animais , Caquexia/metabolismo , Leucina/farmacologia , Leucina/metabolismo , Músculo Esquelético/metabolismo , Proteínas/metabolismo , Suplementos Nutricionais , Morbidade , Neoplasias Colorretais/complicações , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/metabolismo
5.
Am J Physiol Cell Physiol ; 325(5): C1276-C1293, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37746697

RESUMO

Disuse-induced muscle atrophy is a common clinical problem observed mainly in older adults, intensive care units patients, or astronauts. Previous studies presented biological sex divergence in progression of disuse-induced atrophy along with differential changes in molecular mechanisms possibly underlying muscle atrophy. The aim of this study was to perform transcriptomic profiling of male and female mice during the onset and progression of unloading disuse-induced atrophy. Male and female mice underwent hindlimb unloading (HU) for 24, 48, 72, and 168 h (n = 8/group). Muscles were weighed for each cohort and gastrocnemius was used for RNA-sequencing analysis. Females exhibited muscle loss as early as 24 h of HU, whereas males after 168 h of HU. In males, pathways related to proteasome degradation were upregulated throughout 168 h of HU, whereas in females these pathways were upregulated up to 72 h of HU. Lcn2, a gene contributing to regulation of myogenesis, was upregulated by 6.46- to 19.86-fold across all time points in females only. A reverse expression of Fosb, a gene related to muscle degeneration, was observed between males (4.27-fold up) and females (4.57-fold down) at 24-h HU. Mitochondrial pathways related to tricarboxylic acid (TCA) cycle were highly downregulated at 168 h of HU in males, whereas in females this downregulation was less pronounced. Collagen-related pathways were consistently downregulated throughout 168 h of HU only in females, suggesting a potential biological sex-specific protective mechanism against disuse-induced fibrosis. In conclusion, females may have protection against HU-induced skeletal muscle mitochondrial degeneration and fibrosis through transcriptional mechanisms, although they may be more vulnerable to HU-induced muscle wasting compared with males.NEW & NOTEWORTHY Herein, we have assessed the transcriptomic response across biological sexes during the onset and progression of unloading disuse-induced atrophy in mice. We have demonstrated an inverse expression of Fosb between males and females, as well as differentially timed patterns of expressing atrophy-related pathways between sexes that are concomitant to the accelerated atrophy in females. We also identified in females signs of mechanisms to combat disuse-induced mitochondrial degeneration and fibrosis.


Assuntos
Elevação dos Membros Posteriores , Transcriptoma , Humanos , Camundongos , Masculino , Feminino , Animais , Idoso , Elevação dos Membros Posteriores/fisiologia , Músculo Esquelético/metabolismo , Atrofia Muscular/patologia , Fibrose , Membro Posterior/metabolismo
6.
J Physiol ; 2023 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-37563881

RESUMO

Circadian rhythms are ∼24 h cycles evident in behaviour, physiology and metabolism. The molecular mechanism directing circadian rhythms is the circadian clock, which is composed of an interactive network of transcription-translation feedback loops. The core clock genes include Bmal1, Clock, Rev-erbα/ß, Per and Cry. In addition to keeping time, the core clock regulates a daily programme of gene expression that is important for overall cell homeostasis. The circadian clock mechanism is present in all cells, including skeletal muscle fibres, and disruption of the muscle clock is associated with changes in muscle phenotype and function. Skeletal muscle atrophy is largely associated with a lower quality of life, frailty and reduced lifespan. Physiological and genetic modification of the core clock mechanism yields immune dysfunction, alters inflammatory factor expression and secretion and is associated with skeletal muscle atrophy in multiple conditions, such as ageing and cancer cachexia. Here, we summarize the possible interplay between the circadian clock modulation of immune cells, systemic inflammatory status and skeletal muscle atrophy in chronic inflammatory conditions. Although there is a clear disruption of circadian clocks in various models of atrophy, the mechanism behind such alterations remains unknown. Understanding the modulatory potential of muscle and immune circadian clocks in inflammation and skeletal muscle health is essential for the development of therapeutic strategies to protect skeletal muscle mass and function of patients with chronic inflammation.

7.
J Appl Physiol (1985) ; 135(3): 655-672, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37535708

RESUMO

Cancer cachexia is clinically defined by involuntary weight loss >5% in <6 mo, primarily affecting skeletal muscle. Here, we aimed to identify sex differences in the onset of colorectal cancer cachexia with specific consideration to skeletal muscle contractile and metabolic functions. Eight-weeks old BALB/c mice (69 males, 59 females) received subcutaneous C26 allografts or PBS vehicle. Tumors were developed for 10-, 15-, 20-, or 25 days. Muscles and organs were collected, in vivo muscle contractility, protein synthesis rate, mitochondrial function, and protein turnover markers were assessed. One-way ANOVA within sex and trend analysis between sexes were performed, P < 0.05. Gastrocnemius and tibialis anterior (TA) muscles became atrophic in male mice at 25 days, whereas female mice exhibited no significant differences in muscle weights at endpoints despite presenting hallmarks of cancer cachexia (fat loss, hepatosplenomegaly). We observed lowered muscle contractility and protein synthesis concomitantly to muscle mass decay in males, with higher proteolytic markers in muscles of both sexes. mRNA of Opa1 was lower in TA, whereas Bnip3 was higher in gastrocnemius after 25 days in male mice, with no significant effect in female mice. Our data suggest relative protections to skeletal muscle in females compared with males despite other canonical signs of cancer cachexia and increased protein degradation markers; suggesting we should place onus upon nonmuscle tissues during early stages of cancer cachexia in females. We noted potential protective mechanisms relating to skeletal muscle contractile and mitochondrial functions. Our findings underline possible heterogeneity in onset of cancer cachexia between biological sexes, suggesting the need for sex-specific approaches to treat cancer cachexia.NEW & NOTEWORTHY Our study demonstrates biological-sex differences in phenotypic characteristics of cancer cachexia between male and female mice, whereby females display many common characteristics of cachexia (gonadal fat loss and hepatosplenomegaly), protein synthesis markers alterations, and common catabolic markers in skeletal muscle despite relatively preserved muscle mass in early-stage cachexia compared with males. Mechanisms of cancer cachexia appear to differ between sexes. Data suggest need to place onus of early cancer cachexia detection and treatment on nonmuscle tissues in females.


Assuntos
Caquexia , Neoplasias , Feminino , Masculino , Animais , Camundongos , Caquexia/metabolismo , Neoplasias/complicações , Neoplasias/patologia , Músculo Esquelético/metabolismo , Redução de Peso , Mitocôndrias/metabolismo , Atrofia Muscular/metabolismo
8.
BMC Genomics ; 24(1): 374, 2023 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-37403010

RESUMO

BACKGROUND: Cancer-cachexia (CC) is a debilitating condition affecting up to 80% of cancer patients and contributing to 40% of cancer-related deaths. While evidence suggests biological sex differences in the development of CC, assessments of the female transcriptome in CC are lacking, and direct comparisons between sexes are scarce. This study aimed to define the time course of Lewis lung carcinoma (LLC)-induced CC in females using transcriptomics, while directly comparing biological sex differences. RESULTS: We found the global gene expression of the gastrocnemius muscle of female mice revealed biphasic transcriptomic alterations, with one at 1 week following tumor allograft and another during the later stages of cachexia development. The early phase was associated with the upregulation of extracellular-matrix pathways, while the later phase was characterized by the downregulation of oxidative phosphorylation, electron transport chain, and TCA cycle. When DEGs were compared to a known list of mitochondrial genes (MitoCarta), ~ 47% of these genes were differently expressed in females exhibiting global cachexia, suggesting transcriptional changes to mitochondrial gene expression happens concomitantly to functional impairments previously published. In contrast, the JAK-STAT pathway was upregulated in both the early and late stages of CC. Additionally, we observed a consistent downregulation of Type-II Interferon signaling genes in females, which was associated with protection in skeletal muscle atrophy despite systemic cachexia. Upregulation of Interferon signaling was noted in the gastrocnemius muscle of cachectic and atrophic male mice. Comparison of female tumor-bearing mice with males revealed ~ 70% of DEGs were distinct between sexes in cachectic animals, demonstrating dimorphic mechanisms of CC. CONCLUSION: Our findings suggest biphasic disruptions in the transcriptome of female LLC tumor-bearing mice: an early phase associated with ECM remodeling and a late phase, accompanied by the onset of systemic cachexia, affecting overall muscle energy metabolism. Notably, ~ 2/3 of DEGs in CC are biologically sex-specific, providing evidence of dimorphic mechanisms of cachexia between sexes. Downregulation of Type-II Interferon signaling genes appears specific to CC development in females, suggesting a new biological sex-specific marker of CC not reliant on the loss of muscle mass, that might represent a protective mechanism against muscle loss in CC in female mice.


Assuntos
Caquexia , Carcinoma Pulmonar de Lewis , Feminino , Masculino , Camundongos , Animais , Caquexia/genética , Caquexia/metabolismo , Caquexia/patologia , Janus Quinases/metabolismo , Transdução de Sinais , Fatores de Transcrição STAT/metabolismo , Músculo Esquelético/metabolismo , Atrofia Muscular/metabolismo , Atrofia Muscular/patologia , Carcinoma Pulmonar de Lewis/complicações , Carcinoma Pulmonar de Lewis/metabolismo , Carcinoma Pulmonar de Lewis/patologia , Transcriptoma , Interferons/metabolismo
9.
iScience ; 26(5): 106643, 2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-37168569

RESUMO

Salmonella Typhimurium drives uptake into non-phagocytic host cells by injecting effector proteins that reorganize the actin cytoskeleton. The host actin regulator N-WASP has been implicated in bacterial entry, but its precise role is not clear. We demonstrate that Cdc42-dependent N-WASP activation, instigated by the Cdc42-activating effector SopE2, strongly impedes Salmonella uptake into host cells. This inhibitory pathway is predominant later in invasion, with the ubiquitin ligase activity of the effector SopA specifically interfering with negative Cdc42-N-WASP signaling at early stages. The cell therefore transitions from being susceptible to invasion, into a state almost completely recalcitrant to bacterial uptake, providing a mechanism to limit the number of internalized Salmonella. Our work raises the possibility that Cdc42-N-WASP, known to be activated by numerous bacterial and viral species during infection and commonly assumed to promote pathogen uptake, is used to limit the entry of multiple pathogens.

10.
Cell Biochem Funct ; 41(4): 478-489, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37150891

RESUMO

Cachexia is characterized by losses in lean body mass and its progression results in worsened quality of life and exacerbated outcomes in cancer patients. However, the role and impact of fibrosis during the early stages and development of cachexia in under-investigated. The purpose of this study was to determine if fibrosis occurs during cachexia development, and to evaluate this in both sexes. Female and male C57BL6/J mice were injected with phosphate-buffered saline or Lewis Lung Carcinoma (LLC) at 8-week of age, and tumors were allowed to develop for 1, 2, 3, or 4 weeks. 3wk and 4wk female tumor-bearing mice displayed a dichotomy in tumor growth and were reassigned to high tumor (HT) and low tumor (LT) groups. In vitro analyses were also performed on cocultured C2C12 and 3T3 cells exposed to LLC conditioned media. Immunohistochemistry and quantitative polymerase chain reaction (qPCR) analysis were used to investigate fibrosis and fibrosis-related signaling in skeletal muscle. Collagen deposition in skeletal muscle was increased in the 1wk, LT, and HT groups in female mice. However, collagen deposition was only increased in the 4wk group in male mice. In general, female mice displayed earlier alterations in extracellular matrix (ECM)-related genes beginning at 1wk post-LLC injection. Whereas this was not seen in males. While overall tumor burden is tightly correlated to cachexia development in both sexes, fibrotic development is not. Male mice did not exhibit early-stage alterations in ECM-related genes contrary to what was noted in female mice.


Assuntos
Caquexia , Carcinoma Pulmonar de Lewis , Masculino , Feminino , Animais , Camundongos , Caquexia/etiologia , Caquexia/patologia , Qualidade de Vida , Músculo Esquelético/patologia , Carcinoma Pulmonar de Lewis/complicações , Carcinoma Pulmonar de Lewis/patologia , Camundongos Endogâmicos C57BL
11.
Am J Physiol Cell Physiol ; 324(5): C1101-C1109, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36971422

RESUMO

MicroRNAs (miRs) control stem cell biology and fate. Ubiquitously expressed and conserved miR-16 was the first miR implicated in tumorigenesis. miR-16 is low in muscle during developmental hypertrophy and regeneration. It is enriched in proliferating myogenic progenitor cells but is repressed during differentiation. The induction of miR-16 blocks myoblast differentiation and myotube formation, whereas knockdown enhances these processes. Despite a central role for miR-16 in myogenic cell biology, how it mediates its potent effects is incompletely defined. In this investigation, global transcriptomic and proteomic analyses after miR-16 knockdown in proliferating C2C12 myoblasts revealed how miR-16 influences myogenic cell fate. Eighteen hours after miR-16 inhibition, ribosomal protein gene expression levels were higher relative to control myoblasts and p53 pathway-related gene abundance was lower. At the protein level at this same time point, miR-16 knockdown globally upregulated tricarboxylic acid (TCA) cycle proteins while downregulating RNA metabolism-related proteins. miR-16 inhibition induced specific proteins associated with myogenic differentiation such as ACTA2, EEF1A2, and OPA1. We extend prior work in hypertrophic muscle tissue and show that miR-16 is lower in mechanically overloaded muscle in vivo. Our data collectively point to how miR-16 is implicated in aspects of myogenic cell differentiation. A deeper understanding of the role of miR-16 in myogenic cells has consequences for muscle developmental growth, exercise-induced hypertrophy, and regenerative repair after injury, all of which involve myogenic progenitors.


Assuntos
MicroRNAs , Diferenciação Celular/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Desenvolvimento Muscular/genética , Fibras Musculares Esqueléticas/metabolismo , Proteoma/genética , Proteômica , Transcriptoma/genética , Animais , Camundongos
12.
J Physiol ; 601(4): 763-782, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36533424

RESUMO

Exercise promotes functional improvements in aged tissues, but the extent to which it simulates partial molecular reprogramming is unknown. Using transcriptome profiling from (1) a skeletal muscle-specific in vivo Oct3/4, Klf4, Sox2 and Myc (OKSM) reprogramming-factor expression murine model; (2) an in vivo inducible muscle-specific Myc induction murine model; (3) a translatable high-volume hypertrophic exercise training approach in aged mice; and (4) human exercise muscle biopsies, we collectively defined exercise-induced genes that are common to partial reprogramming. Late-life exercise training lowered murine DNA methylation age according to several contemporary muscle-specific clocks. A comparison of the murine soleus transcriptome after late-life exercise training to the soleus transcriptome after OKSM induction revealed an overlapping signature that included higher JunB and Sun1. Also, within this signature, downregulation of specific mitochondrial and muscle-enriched genes was conserved in skeletal muscle of long-term exercise-trained humans; among these was muscle-specific Abra/Stars. Myc is the OKSM factor most induced by exercise in muscle and was elevated following exercise training in aged mice. A pulse of MYC rewired the global soleus muscle methylome, and the transcriptome after a MYC pulse partially recapitulated OKSM induction. A common signature also emerged in the murine MYC-controlled and exercise adaptation transcriptomes, including lower muscle-specific Melusin and reactive oxygen species-associated Romo1. With Myc, OKSM and exercise training in mice, as well habitual exercise in humans, the complex I accessory subunit Ndufb11 was lower; low Ndufb11 is linked to longevity in rodents. Collectively, exercise shares similarities with genetic in vivo partial reprogramming. KEY POINTS: Advances in the last decade related to cellular epigenetic reprogramming (e.g. DNA methylome remodelling) toward a pluripotent state via the Yamanaka transcription factors Oct3/4, Klf4, Sox2 and Myc (OKSM) provide a window into potential mechanisms for combatting the deleterious effects of cellular ageing. Using global gene expression analysis, we compared the effects of in vivo OKSM-mediated partial reprogramming in skeletal muscle fibres of mice to the effects of late-life murine exercise training in muscle. Myc is the Yamanaka factor most induced by exercise in skeletal muscle, and so we compared the MYC-controlled transcriptome in muscle to Yamanaka factor-mediated and exercise adaptation mRNA landscapes in mice and humans. A single pulse of MYC is sufficient to remodel the muscle methylome. We identify partial reprogramming-associated genes that are innately altered by exercise training and conserved in humans, and propose that MYC contributes to some of these responses.


Assuntos
Envelhecimento , Reprogramação Celular , Exercício Físico , Músculo Esquelético , Animais , Humanos , Camundongos , Reprogramação Celular/genética , Modelos Animais de Doenças , Metilação de DNA , Exercício Físico/fisiologia , Perfilação da Expressão Gênica , Proteínas de Membrana/metabolismo , Proteínas Mitocondriais/metabolismo , Músculo Esquelético/metabolismo , Envelhecimento/genética , Envelhecimento/fisiologia
13.
JCI Insight ; 7(24)2022 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-36346680

RESUMO

Muscle weakness and wasting are defining features of cancer-induced cachexia. Mitochondrial stress occurs before atrophy in certain muscles, but the possibility of heterogeneous responses between muscles and across time remains unclear. Using mice inoculated with Colon-26 cancer, we demonstrate that specific force production was reduced in quadriceps and diaphragm at 2 weeks in the absence of atrophy. At this time, pyruvate-supported mitochondrial respiration was lower in quadriceps while mitochondrial H2O2 emission was elevated in diaphragm. By 4 weeks, atrophy occurred in both muscles, but specific force production increased to control levels in quadriceps such that reductions in absolute force were due entirely to atrophy. Specific force production remained reduced in diaphragm. Mitochondrial respiration increased and H2O2 emission was unchanged in both muscles versus control while mitochondrial creatine sensitivity was reduced in quadriceps. These findings indicate muscle weakness precedes atrophy and is linked to heterogeneous mitochondrial alterations that could involve adaptive responses to metabolic stress. Eventual muscle-specific restorations in specific force and bioenergetics highlight how the effects of cancer on one muscle do not predict the response in another muscle. Exploring heterogeneous responses of muscle to cancer may reveal new mechanisms underlying distinct sensitivities, or resistance, to cancer cachexia.


Assuntos
Caquexia , Neoplasias do Colo , Camundongos , Animais , Caquexia/etiologia , Caquexia/metabolismo , Músculo Esquelético/metabolismo , Peróxido de Hidrogênio/metabolismo , Debilidade Muscular/metabolismo , Atrofia/metabolismo , Atrofia/patologia , Neoplasias do Colo/metabolismo
14.
J Biol Chem ; 298(11): 102515, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36150502

RESUMO

Myc is a powerful transcription factor implicated in epigenetic reprogramming, cellular plasticity, and rapid growth as well as tumorigenesis. Cancer in skeletal muscle is extremely rare despite marked and sustained Myc induction during loading-induced hypertrophy. Here, we investigated global, actively transcribed, stable, and myonucleus-specific transcriptomes following an acute hypertrophic stimulus in mouse plantaris. With these datasets, we define global and Myc-specific dynamics at the onset of mechanical overload-induced muscle fiber growth. Data collation across analyses reveals an under-appreciated role for the muscle fiber in extracellular matrix remodeling during adaptation, along with the contribution of mRNA stability to epigenetic-related transcript levels in muscle. We also identify Runx1 and Ankrd1 (Marp1) as abundant myonucleus-enriched loading-induced genes. We observed that a strong induction of cell cycle regulators including Myc occurs with mechanical overload in myonuclei. Additionally, in vivo Myc-controlled gene expression in the plantaris was defined using a genetic muscle fiber-specific doxycycline-inducible Myc-overexpression model. We determined Myc is implicated in numerous aspects of gene expression during early-phase muscle fiber growth. Specifically, brief induction of Myc protein in muscle represses Reverbα, Reverbß, and Myh2 while increasing Rpl3, recapitulating gene expression in myonuclei during acute overload. Experimental, comparative, and in silico analyses place Myc at the center of a stable and actively transcribed, loading-responsive, muscle fiber-localized regulatory hub. Collectively, our experiments are a roadmap for understanding global and Myc-mediated transcriptional networks that regulate rapid remodeling in postmitotic cells. We provide open webtools for exploring the five RNA-seq datasets as a resource to the field.


Assuntos
Desenvolvimento Muscular , Fibras Musculares Esqueléticas , Camundongos , Animais , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Hipertrofia/metabolismo , Perfilação da Expressão Gênica
15.
Sports Med Health Sci ; 4(3): 183-189, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36090917

RESUMO

Non-alcoholic fatty liver disease (NAFLD) has recently become a public health concern concurrent with the obesity crisis. Previous work has shown aberrant mitochondrial content/quality and autophagy in models of NAFLD, whereas exercise is known to improve these derangements. The purpose of this study was to examine the effect of different weight-loss modalities on hepatic mitochondrial content, autophagy and mitophagy in NAFLD. Forty-eight male C57BL/6J mice were divided into 1 of 4 groups: low fat diet (LFD, 10% fat, 18 weeks), high fat diet (HFD, 60% fat diet, 18 weeks), weight-loss by diet (D, 60% fat diet for 10 weeks then 10% fat diet for 8 weeks) or weight-loss by diet and physical activity (D/PA, 60% fat diet for 10 weeks, then 10% fat diet plus a running wheel for 8 weeks). Immunoblot data were analyzed by one-way analysis of variance (ANOVA) with significance denoted at p â€‹< â€‹0.05. COX-IV protein contents were approximately 50% less in HFD compared to LFD. D/PA had 50% more BNIP3 compared to HFD. PINK1 content was 40% higher in D and D/PA compared to LFD. P-PARKIN/PARKIN levels were 40% lower in HFD, D, and D/PA compared to LFD. Whereas p-UbSer65 was 3-fold higher in HFD. LC3II/I ratio was 50% greater in HFD and D/PA, yet p62 protein content was 2.5 fold higher in HFD. High-fat diet causes disruptions in markers of mitochondrial quality control. Physical activity combined with diet were able to ameliorate these derangements and seemingly improve hepatic mitochondrial quality above control values.

16.
Proc Natl Acad Sci U S A ; 119(36): e2208662119, 2022 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-36037338

RESUMO

In gram-negative bacteria, lipoproteins are vital structural components of the outer membrane (OM) and crucial elements of machineries central to the physiology of the cell envelope. A dedicated apparatus, the Lol system, is required for the correct localization of OM lipoproteins and is essential for viability. The periplasmic chaperone LolA is central to this trafficking pathway, accepting triacylated lipoproteins from the inner membrane transporter LolCDE, before carrying them across the periplasm to the OM receptor LolB. Here, we report a crystal structure of liganded LolA, generated in vivo, revealing the molecular details of lipoprotein association. The structure highlights how LolA, initially primed to receive lipoprotein by interaction with LolC, further opens to accommodate the three ligand acyl chains in a precise conformation within its cavity. LolA forms extensive interactions with the acyl chains but not with any residue of the cargo, explaining the chaperone's ability to transport structurally diverse lipoproteins. Structural characterization of a ligandedLolA variant incapable of lipoprotein release reveals aberrant association, demonstrating the importance of the LolCDE-coordinated, sequential opening of LolA for inserting lipoprotein in a manner productive for subsequent trafficking. Comparison with existing structures of LolA in complex with LolC or LolCDE reveals substantial overlap of the lipoprotein and LolC binding sites within the LolA cavity, demonstrating that insertion of lipoprotein acyl chains physically disengages the chaperone protein from the transporter by perturbing interaction with LolC. Taken together, our data provide a key step toward a complete understanding of a fundamentally important trafficking pathway.


Assuntos
Proteínas de Escherichia coli , Proteínas Periplásmicas de Ligação , Transporte Proteico , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Transporte/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Ligantes , Lipoproteínas/metabolismo , Modelos Moleculares , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Periplasma/metabolismo , Proteínas Periplásmicas de Ligação/química , Proteínas Periplásmicas de Ligação/genética , Proteínas Periplásmicas de Ligação/metabolismo , Estrutura Terciária de Proteína , Transporte Proteico/genética
17.
Appl Physiol Nutr Metab ; 47(9): 933-948, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35700525

RESUMO

Cancer cachexia (CC) accounts for 20%-40% of cancer-related deaths. Mitochondrial aberrations have been shown to precede muscle atrophy in different atrophy models, including cancer. Therefore, this study investigated potential protection from the cachectic phenotype through overexpression of peroxisome proliferator-activated receptor γ coactivator-1 α (PGC-1α). First, to establish potential of mitochondria-based approaches we showed that the mitochondrial antioxidant MitoTEMPO (MitoT) attenuates myotube atrophy induced by Lewis lung carcinoma (LLC) cell conditioned media. Next, cachexia was induced in muscle-specific PGC-1α overexpressing (MCK-PCG1α) or wildtype (WT) littermate mice by LLC implantation. MCK-PCG1α did not protect LLC-induced muscle mass loss. In plantaris, Atrogin mRNA content was 6.2-fold and ∼11-fold greater in WT-LLC vs WT-phosphate-buffered saline (PBS) for males and females, respectively (p < 0.05). MitoTimer red:green ratio for male PGC was ∼65% higher than WT groups (p < 0.05), with ∼3-fold more red puncta in LLC than PBS (p < 0.05). Red:green ratio was ∼56% lower in females WT-LLC vs PGC-LLC (p < 0.05). In females, no change in red puncta was noted across conditions. Lc3 mRNA content was ∼73% and 2-fold higher in male and female LLC mice, respectively, vs PBS (p < 0.05). While MitoT could mitigate cancer-induced atrophy in vitro, PGC-1α overexpression was insufficient to protect muscle mass and mitochondrial health in vivo despite mitigation of cachexia-associated signaling pathways.


Assuntos
Carcinoma Pulmonar de Lewis , Doenças Musculares , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Animais , Caquexia/etiologia , Caquexia/prevenção & controle , Carcinoma Pulmonar de Lewis/genética , Carcinoma Pulmonar de Lewis/metabolismo , Feminino , Masculino , Camundongos , Mitocôndrias/metabolismo , Músculo Esquelético/metabolismo , Atrofia Muscular/etiologia , Atrofia Muscular/prevenção & controle , Doenças Musculares/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , RNA Mensageiro/metabolismo
18.
Cancers (Basel) ; 14(10)2022 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-35626116

RESUMO

Cancer cachexia (CC) is a multifactorial syndrome characterised by unintentional loss of body weight and muscle mass in patients with cancer. The major hallmarks associated with CC development and progression include imbalanced protein turnover, inflammatory signalling, mitochondrial dysfunction and satellite cell dysregulation. So far, there is no effective treatment to counteract muscle wasting in patients with CC. Exercise training has been proposed as a potential therapeutic approach for CC. This review provides an overview of the effects of exercise training in CC-related mechanisms as well as how factors such as cancer comorbidities, exercise modality and biological sex can influence exercise effectiveness in CC. Evidence in mice and humans suggests exercise training combats all of the hallmarks of CC. Several exercise modalities induce beneficial adaptations in patients/animals with CC, but concurrent resistance and endurance training is considered the optimal type of exercise. In the case of cancer patients presenting comorbidities, exercise training should be performed only under specific guidelines and precautions to avoid adverse effects. Observational comparison of studies in CC using different biological sex shows exercise-induced adaptations are similar between male and female patients/animals with cancer, but further studies are needed to confirm this.

20.
Am J Physiol Endocrinol Metab ; 322(3): E278-E292, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35068192

RESUMO

microRNAs (miRs) are linked to various human diseases including type 2 diabetes mellitus (T2DM) and emerging evidence suggests that miRs may serve as potential therapeutic targets. Lower miR-16 content is consistent across different models of T2DM; however, the role of miR-16 in muscle metabolic health is still elusive. Therefore, the purpose of this study was to investigate how deletion of miR-16 in mice affects skeletal muscle metabolic health and contractile function in both sexes. This study was conducted using both 1) in vitro and 2) in vivo experiments. In in vitro experiments, we used C2C12 myoblasts to test if inhibition or overexpression of miR-16 affected insulin-mediated glucose handling. In in vivo experiments, we generated muscle-specific miR-16 knockout (KO) mice fed a high-fat diet (HFD) to assess how miR-16 content impacts metabolic and contractile properties including glucose tolerance, insulin sensitivity, muscle contractile function, protein anabolism, and mitochondrial network health. In in vitro experiments, although inhibition of miR-16 induced impaired insulin signaling (P = 0.002) and glucose uptake (P = 0.014), overexpression of miR-16 did not attenuate lipid overload-induced insulin resistance using the diacylglycerol analog 1-oleoyl-2-acetyl-sn-glycerol. In in vivo experiments, miR-16 deletion induced both impaired muscle contractility (P = 0.031-0.033), and mitochondrial network health (P = 0.008-0.018) in both sexes. However, although males specifically exhibited impaired insulin sensitivity following miR-16 deletion (P = 0.030), female KO mice showed pronounced glucose intolerance (P = 0.046), corresponding with lower muscle weights (P = 0.015), and protein hyperanabolism (P = 0.023). Our findings suggest distinct sex differences in muscle adaptation in response to miR-16 deletion and miR-16 may serve as a key regulator for metabolic dysregulation in T2DM.NEW & NOTEWORTHY We set to investigate the role of miR-16 in skeletal muscle during diet-induced insulin resistance. Our data provide novel evidence that the lack of miR-16 induced multiple aberrations in insulin sensitivity, muscle contractility, mitochondrial network health, and protein turnover in a sex-dependent manner. Interestingly, miR-16 deletion leads to insulin resistance in males and exacerbated glucose intolerance in females, suggesting different mechanisms of metabolic dysregulation with a lack of miR-16 between sexes.


Assuntos
Diabetes Mellitus Tipo 2 , Intolerância à Glucose , Resistência à Insulina , MicroRNAs , Animais , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Dieta Hiperlipídica , Feminino , Glucose/metabolismo , Intolerância à Glucose/genética , Intolerância à Glucose/metabolismo , Insulina/metabolismo , Resistência à Insulina/genética , Masculino , Camundongos , Camundongos Knockout , MicroRNAs/genética , MicroRNAs/metabolismo , Músculo Esquelético/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...