Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 20416, 2023 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-37989760

RESUMO

Contemporary designs of engineering structures strive to minimize the use of material in order to reduce cost and weight. However, the approach taken by focusing on materials selection and on the design of the exterior shape of structures has reached its limits. By contrast, nature implements bottom-up designs based on a multiple-level hierarchy, spanning from nanoscale to macroscale, which evolved over millions of years in an environmentally sustainable manner given limited resources. Natural structures often appear as laminates in wood, bone, plants, exoskeletons, etc., and employ elaborate micro-structural mechanisms to generate simultaneous strength and toughness. One such mechanism, observed in the scorpion cuticle and in the sponge spicule, is the grading (gradual change) of properties like layers thickness, stiffness, strength and toughness. We show that grading is a biological design tradeoff, which optimizes the use of material to enhance survival traits such as endurance against impending detrimental cracks. We found that such design, when applied in a more vulnerable direction of the laminate, has the potential to restrain propagation of hazardous cracks by deflecting or bifurcating them. This is achieved by shifting material from non-critical regions to more critical regions, making the design sustainable in the sense of efficient use of building resources. We investigate how such a mechanism functions in nature and how it can be implemented in synthetic structures, by means of a generic analytical model for crack deflection in a general laminate. Such a mechanical model may help optimize the design of bioinspired structures for specific applications and, eventually, reduce material waste.


Assuntos
Osso e Ossos , Madeira , Animais , Escorpiões
2.
Bioinspir Biomim ; 18(3)2023 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-36863022

RESUMO

A crack propagating through a laminate can cause severe structural failure, which may be avoided by deflecting or arresting the crack before it deepens. Inspired by the biology of the scorpion exoskeleton, this study shows how crack deflection can be achieved by gradually varying the stiffness and thickness of the laminate layers. A new generalized multi-layer, multi-material analytical model is proposed, using linear elastic fracture mechanics. The condition for deflection is modeled by comparing the applied stress causing a cohesive failure, resulting in crack propagation, to that causing an adhesive failure, resulting in delamination between layers. We show that a crack propagating in a direction of progressively decreasing elastic moduli is likely to deflect sooner than when the moduli are uniform or increasing. The model is applied to the scorpion cuticle, the laminated structure of which is composed of layers of helical units (Bouligands) with inward decreasing moduli and thickness, interleaved with stiff unidirectional fibrous layers (interlayers). The decreasing moduli act to deflect cracks, whereas the stiff interlayers serve as crack arrestors, making the cuticle less vulnerable to external defects induced by its exposure to harsh living conditions. These concepts may be applied in the design of synthetic laminated structures to improve their damage tolerance and resilience.


Assuntos
Biologia , Módulo de Elasticidade
3.
ACS Appl Nano Mater ; 5(3): 3654-3666, 2022 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-35372796

RESUMO

The molecular orientation in polymer fibers is investigated for the purpose of enhancing their optical properties through nanoscale control by nanowires mixed in electrospun solutions. A prototypical system, consisting of a conjugated polymer blended with polyvinylpyrrolidone, mixed with WO3 nanowires, is analyzed. A critical strain rate of the electrospinning jet is determined by theoretical modeling at which point the polymer network undergoes a stretch transition in the fiber direction, resulting in a high molecular orientation that is partially retained after solidification. Nearing a nanowire boundary, local adsorption of the polymer and hydrodynamic drag further enhance the molecular orientation. These theoretical predictions are supported by polarized scanning near-field optical microscopy experiments, where the dichroic ratio of the light transmitted by the fiber provides evidence of increased orientation nearby nanowires. The addition of nanowires to enhance molecular alignment in polymer fibers might consequently enhance properties such as photoluminescence quantum yield, polarized emission, and tailored energy migration, exploitable in light-emitting photonic and optoelectronic devices and for sensing applications.

4.
Materials (Basel) ; 15(3)2022 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-35160836

RESUMO

The fibre-matrix interface plays an important role in the overall mechanical behaviour of a fibre-reinforced composite, but the classical approach to improving the interface through chemical sizing is bounded by the materials' properties. By contrast, structural and/or geometrical modification of the interface may provide mechanical interlocking and have wider possibilities and benefits. Here we investigate the introduction of polymer beads along the interface of a fibre and validate their contribution by a single fibre fragmentation test. Using glass fibres and the same epoxy system for both matrix and beads, an increase of 17.5% is observed in the interfacial shear strength of the beaded fibres compared to fibres with no polymer beads. This increase should lead to a similar improvement in the strength and toughness of a beaded fibre composite when short fibres are used. The beads were also seen to stabilise the fragmentation process of a fibre by reducing the scatter in fragment density at a given strain. A case could also be made for a critical beads number-4 beads in our experimental system-to describe interfacial shear strength, analogous to a critical length used in fibre composites.

5.
Bioinspir Biomim ; 16(2)2021 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-33307544

RESUMO

Biological structures such as bone, nacre and exoskeletons are organized hierarchically, with the degree of isotropy correlating with the length-scale. In these structures, the basic components are nanofibers or nanoplatelets, which are strong and stiff but anisotropic, whereas at the macrolevel, isotropy is preferred because the direction and magnitude of loads is unpredictable. The structural features and mechanisms, which drive the transition from anisotropy to isotropy across length scales, raise fundamental questions and are therefore the subject of the current study. Focusing on the tibia (fixed finger) of the scorpion pincer, bending tests of cuticle samples confirm the macroscale isotropy of the strength, stiffness, and toughness. Imaging analysis of the cuticle reveals an intricate multilayer laminated structure, with varying chitin-protein fiber orientations, arranged in eight hierarchical levels. We show that the cuticle flexural stiffness is increased by the existence of a thick intermediate layer, not seen before in the claws of crustaceans. Using laminate analysis to model the cuticle structure, we were able to correlate the nanostructure to the macro-mechanical properties, uncovering shear enhancing mechanisms at different length scales. These mechanisms, together with the hierarchical structure, are essential for achieving macro-scale isotropy. Interlaminar failure (ILF) analysis of the cuticle leads to an estimation of the protein matrix shear strength, previously not measured. A similar structural approach can be adopted to the design of future synthetic composites with balanced strength, stiffness, toughness, and isotropy.


Assuntos
Nácar , Escorpiões , Animais , Anisotropia , Quitina/química , Resistência ao Cisalhamento
6.
Materials (Basel) ; 13(10)2020 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-32466192

RESUMO

Short fibers may serve as toughening agents of composite materials because of the high energy dissipated during fracture, associated with numerous fiber pullouts. An ongoing challenge is to improve their toughness even further, by directing and concentrating fibers near highly stressed structural regions. Weak magnetic fields are utilized to increase the fracture toughness of an epoxy matrix reinforced by short magnetized glass fibers by directing and concentrating fibers near highly stressed structural regions. The orientation and local concentration of the fibers are controlled by the vector components of the magnetic field, and by the gradient in field intensity, respectively. Optimized fracture toughness was achieved by using two pairs of permanent magnets, combining enhanced concentration of fibers in the crack-tip vicinity with alignment of the fibers along the load direction. This optimized value was well above the reference fracture-toughness measured for composites with the same filler content in the absence of a magnetic field, as well as above the value achieved by exploiting unidirectional alignment, without fiber translation, using a solenoid. The method suggested in this study-localized reinforcement using magnetic translation of fillers through the formation of magnetic gradients-enables efficient and controllable improvement in the composite's overall resistance to fracture, without the involvement of additional phases or material.

7.
Nat Commun ; 11(1): 224, 2020 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-31932633

RESUMO

Helicoidal formations often appear in natural microstructures such as bones and arthropods exoskeletons. Named Bouligands after their discoverer, these structures are angle-ply laminates that assemble from laminae of chitin or collagen fibers embedded in a proteinaceous matrix. High resolution electron microscope images of cross-sections through scorpion claws are presented here, uncovering structural features that are different than so-far assumed. These include in-plane twisting of laminae around their corners rather than through their centers, and a second orthogonal rotation angle which gradually tilts the laminae out-of-plane. The resulting Bouligand laminate unit (BLU) is highly warped, such that neighboring BLUs are intricately intertwined, tightly nested and mechanically interlocked. Using classical laminate analysis extended to laminae tilting, it is shown that tilting significantly enhances the laminate flexural stiffness and strength, and may improve toughness by diverting crack propagation. These observations may be extended to diverse biological species and potentially applied to synthetic structures.


Assuntos
Exoesqueleto/ultraestrutura , Escorpiões/ultraestrutura , Exoesqueleto/anatomia & histologia , Exoesqueleto/fisiologia , Animais , Anisotropia , Quitina/ultraestrutura , Elasticidade , Extremidades/anatomia & histologia , Dureza , Microscopia Eletrônica , Modelos Biológicos , Modelos Estruturais , Proteínas/ultraestrutura , Escorpiões/anatomia & histologia
8.
ACS Appl Mater Interfaces ; 10(19): 16802-16811, 2018 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-29694781

RESUMO

The flexural rigidity of cylindrical specimens, composed of epoxy reinforced by short, magnetized glass fibers, was enhanced using weak magnetic fields (<100 mT). By spatially controlling the magnitude and direction of the field, and thereby the torques and forces acting locally on the fibers, the orientation and concentration of the fillers in the matrix could be tuned prior to curing. Unidirectional alignment of the fibers, achieved using an air-core solenoid, improved the contribution of the fibers to the flexure modulus by a factor of 3. When a ring-shaped permanent magnet was utilized, the glass fibers were migrated preferentially near the rod boundary, and as a result, the contribution of the fibers to the flexure modulus doubled. The fiber length, density, and orientation distributions were extracted by µCT image analysis, allowing comparison of the experimental flexure modulus to a modified rule of mixtures prediction. The ability to magnetically control the fiber distribution in reinforced composites demonstrated in this study may be applied in the fabrication of complex micro- and macroscale structures with spatially variable anisotropy, allowing features such as crack diversion, strengthening of highly loaded regions, as well as economic management of materials and weight.

9.
Sci Adv ; 2(2): e1500969, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26989774

RESUMO

Defects in crystalline structure are commonly believed to degrade the ideal strength of carbon nanotubes. However, the fracture mechanisms induced by such defects, as well as the validity of solid mechanics theories at the nanoscale, are still under debate. We show that the fracture toughness of single-walled nanotubes (SWNTs) conforms to the classic theory of fracture mechanics, even for the smallest possible vacancy defect (~2 Å). By simulating tension of SWNTs containing common types of defects, we demonstrate how stress concentration at the defect boundary leads to brittle (unstable) fracturing at a relatively low strain, degrading the ideal strength of SWNTs by up to 60%. We find that, owing to the SWNT's truss-like structure, defects at this scale are not sharp and stress concentrations are finite and low. Moreover, stress concentration, a geometric property at the macroscale, is interrelated with the SWNT fracture toughness, a material property. The resulting SWNT fracture toughness is 2.7 MPa m(0.5), typical of moderately brittle materials and applicable also to graphene.

10.
Macromolecules ; 47(14): 4704-4710, 2014 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-25067856

RESUMO

Polymer fibers are currently exploited in tremendously important technologies. Their innovative properties are mainly determined by the behavior of the polymer macromolecules under the elongation induced by external mechanical or electrostatic forces, characterizing the fiber drawing process. Although enhanced physical properties were observed in polymer fibers produced under strong stretching conditions, studies of the process-induced nanoscale organization of the polymer molecules are not available, and most of fiber properties are still obtained on an empirical basis. Here we reveal the orientational properties of semiflexible polymers in electrospun nanofibers, which allow the polarization properties of active fibers to be finely controlled. Modeling and simulations of the conformational evolution of the polymer chains during electrostatic elongation of semidilute solutions demonstrate that the molecules stretch almost fully within less than 1 mm from jet start, increasing polymer axial orientation at the jet center. The nanoscale mapping of the local dichroism of individual fibers by polarized near-field optical microscopy unveils for the first time the presence of an internal spatial variation of the molecular order, namely the presence of a core with axially aligned molecules and a sheath with almost radially oriented molecules. These results allow important and specific fiber properties to be manipulated and tailored, as here demonstrated for the polarization of emitted light.

11.
Nano Lett ; 13(11): 5056-62, 2013 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-24090350

RESUMO

The properties of polymeric nanofibers can be tailored and enhanced by properly managing the structure of the polymer molecules at the nanoscale. Although electrospun polymer fibers are increasingly exploited in many technological applications, their internal nanostructure, determining their improved physical properties, is still poorly investigated and understood. Here, we unravel the internal structure of electrospun functional nanofibers made by prototype conjugated polymers. The unique features of near-field optical measurements are exploited to investigate the nanoscale spatial variation of the polymer density, evidencing the presence of a dense internal core embedded in a less dense polymeric shell. Interestingly, nanoscale mapping the fiber Young's modulus demonstrates that the dense core is stiffer than the polymeric, less dense shell. These findings are rationalized by developing a theoretical model and simulations of the polymer molecular structural evolution during the electrospinning process. This model predicts that the stretching of the polymer network induces a contraction of the network toward the jet center with a local increase of the polymer density, as observed in the solid structure. The found complex internal structure opens an interesting perspective for improving and tailoring the molecular morphology and multifunctional electronic and optical properties of polymer fibers.

12.
Phys Rev E Stat Nonlin Soft Matter Phys ; 84(4 Pt 1): 041806, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22181164

RESUMO

Electrospun polymer nanofibers demonstrate outstanding mechanical and thermodynamic properties as compared to macroscopic-scale structures. Our previous work has demonstrated that these features are attributed to nanofiber microstructure [Nat. Nanotechnol. 2, 59 (2007)]. It is clear that this microstructure is formed during the electrospinning process, characterized by a high stretching rate and rapid evaporation. Thus, when studying microstructure formation, its fast evolution must be taken into account. This study focuses on the dynamics of a highly entangled semidilute polymer solution under extreme longitudinal acceleration. The theoretical modeling predicts substantial longitudinal stretching and transversal contraction of the polymer network caused by the jet hydrodynamic forces, transforming the network to an almost fully stretched state. This prediction was verified by x-ray phase-contrast imaging of electrospinning jets of poly(ethylene oxide) and poly(methyl methacrylate) semidilute solutions, which revealed a noticeable increase in polymer concentration at the jet center, within less than 1 mm from the jet start. Thus, the proposed mechanism is applicable to the initial stage of the microstructure formation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA