Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Geophys Res Planets ; 125(1): e2019JE006024, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32714725

RESUMO

Both Earth and the Moon share a common history regarding the epoch of large basin formation, though only the lunar geologic record preserves any appreciable record of this Late Heavy Bombardment. The emergence of Earth's first life is approximately contemporaneous with the Late Heavy Bombardment; understanding the latter informs the environmental conditions of the former, which are likely necessary to constrain the mechanisms of abiogenesis. While the relative formation time of most of the Moon's large basins is known, the absolute timing is not. The timing of Crisium Basin's formation is one of many important events that must be constrained and would require identifying and dating impact melt formed in the Crisium event. To inform a future lunar sample dating mission, we thus characterized possible outcrops of impact melt. We determined that several mare lava-embayed kipukas could contain impact melt, though the rim and central peaks of the partially lava-flooded Yerkes Crater likely contain the most pure and intact Crisium impact melt. It is here where future robotic and/or human missions could confidently add a key missing piece to the puzzle of the combined issues of early Earth-Moon bombardment and the emergence of life.

2.
Rev Sci Instrum ; 83(12): 124502, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23278007

RESUMO

One of the key problems in determining lunar surface composition for thermal-infrared measurements is the lack of comparable laboratory-measured spectra. As the surface is typically composed of fine-grained particulates, the lunar environment induces a thermal gradient within the near sub-surface, altering the emission spectra: this environment must therefore be simulated in the laboratory, considerably increasing the complexity of the measurement. Previous measurements have created this thermal gradient by either heating the cup in which the sample sits or by illuminating the sample using a solar-like source. This is the first setup able to measure in both configurations, allowing direct comparisons to be made between the two. Also, measurements across a wider spectral range and at a much higher spectral resolution can be acquired using this new setup. These are required to support new measurements made by the Diviner Lunar Radiometer, the first multi-spectral thermal-infrared instrument to orbit the Moon. Results from the two different heating methods are presented, with measurements of a fine-grained quartz sample compared to previous similar measurements, plus measurements of a common lunar highland material, anorthite. The results show that quartz gives the same results for both methods of heating, as predicted by previous studies, though the anorthite spectra are different. The new calibration pipeline required to convert the raw data into emissivity spectra is described also.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...