Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Cell Sci ; 133(5)2020 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-32005697

RESUMO

Migratory macrophages play critical roles in tissue development, homeostasis and disease, so it is important to understand how their migration machinery is regulated. Whole-transcriptome sequencing revealed that CSF-1-stimulated differentiation of bone marrow-derived precursors into mature macrophages is accompanied by widespread, profound changes in the expression of genes regulating adhesion, actin cytoskeletal remodeling and extracellular matrix degradation. Significantly altered expression of almost 40% of adhesion genes, 60-86% of Rho family GTPases, their regulators and effectors and over 70% of extracellular proteases occurred. The gene expression changes were mirrored by changes in macrophage adhesion associated with increases in motility and matrix-degrading capacity. IL-4 further increased motility and matrix-degrading capacity in mature macrophages, with additional changes in migration machinery gene expression. Finally, siRNA-induced reductions in the expression of the core adhesion proteins paxillin and leupaxin decreased macrophage spreading and the number of adhesions, with distinct effects on adhesion and their distribution, and on matrix degradation. Together, the datasets provide an important resource to increase our understanding of the regulation of migration in macrophages and to develop therapies targeting disease-enhancing macrophages.


Assuntos
Fator Estimulador de Colônias de Macrófagos , Macrófagos , Animais , Adesão Celular/genética , Movimento Celular/genética , Expressão Gênica , Fator Estimulador de Colônias de Macrófagos/genética , Camundongos
2.
J Immunol ; 200(1): 260-270, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29167231

RESUMO

The ability of macrophages to respond to chemoattractants and inflammatory signals is important for their migration to sites of inflammation and immune activity and for host responses to infection. Macrophages differentiated from the bone marrow (BM) of UV-irradiated mice, even after activation with LPS, migrated inefficiently toward CSF-1 and CCL2. When BM cells were harvested from UV-irradiated mice and transplanted into naive mice, the recipient mice (UV-chimeric) had reduced accumulation of elicited monocytes/macrophages in the peritoneal cavity in response to inflammatory thioglycollate or alum. Macrophages differentiating from the BM of UV-chimeric mice also had an inherent reduced ability to migrate toward chemoattractants in vitro, even after LPS activation. Microarray analysis identified reduced reticulon-1 mRNA expressed in macrophages differentiated from the BM of UV-chimeric mice. By using an anti-reticulon-1 Ab, a role for reticulon-1 in macrophage migration toward both CSF-1 and CCL2 was confirmed. Reticulon-1 subcellular localization to the periphery after exposure to CSF-1 for 2.5 min was shown by immunofluorescence microscopy. The proposal that reduced reticulon-1 is responsible for the poor inherent ability of macrophages to respond to chemokine gradients was supported by Western blotting. In summary, skin exposure to erythemal UV radiation can modulate macrophage progenitors in the BM such that their differentiated progeny respond inefficiently to signals to accumulate at sites of inflammation and immunity.


Assuntos
Células da Medula Óssea/fisiologia , Macrófagos/fisiologia , Proteínas do Tecido Nervoso/metabolismo , Animais , Anticorpos Bloqueadores/metabolismo , Diferenciação Celular , Movimento Celular/genética , Células Cultivadas , Quimiocina CCL2/metabolismo , Feminino , Lipopolissacarídeos/imunologia , Fator Estimulador de Colônias de Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Proteínas do Tecido Nervoso/genética , Quimera por Radiação , Análise Serial de Tecidos , Raios Ultravioleta/efeitos adversos
3.
Exp Hematol ; 56: 64-68, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28822771

RESUMO

Monocytes/macrophages differentiating from bone marrow (BM) cells pulsed for 2 hours at 37°C with a stabilized derivative of prostaglandin E2, 16,16-dimethyl PGE2 (dmPGE2), migrated less efficiently toward a chemoattractant than monocytes/macrophages differentiated from BM cells pulsed with vehicle. To confirm that the effect on BM cells was long lasting and to replicate human BM transplantation, chimeric mice were established with donor BM cells pulsed for 2 hours with dmPGE2 before injection into marrow-ablated congenic recipient mice. After 12 weeks, when high levels (90%) of engraftment were obtained, regenerated BM-derived monocytes/macrophages differentiating in vitro or in vivo migrated inefficiently toward the chemokines colony-stimulating factor-1 (CSF-1) and chemokine (C-C motif) ligand 2 (CCL2) or thioglycollate, respectively. Our results reveal long-lasting changes to progenitor cells of monocytes/macrophages by a 2-hour dmPGE2 pulse that, in turn, limits the migration of their daughter cells to chemoattractants and inflammatory mediators.


Assuntos
Células da Medula Óssea/metabolismo , Movimento Celular/efeitos dos fármacos , Dinoprostona/farmacologia , Macrófagos/metabolismo , Monócitos/metabolismo , 16,16-Dimetilprostaglandina E2/farmacologia , Animais , Células da Medula Óssea/citologia , Quimiocina CCL2/metabolismo , Fator Estimulador de Colônias de Macrófagos/metabolismo , Macrófagos/citologia , Camundongos , Monócitos/citologia
4.
Am J Pathol ; 187(9): 2046-2059, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28708972

RESUMO

A systemic immunosuppression follows UV irradiation of the skin of humans and mice. In this study, dendritic cells (DCs) differentiating from the bone marrow (BM) of UV-irradiated mice had a reduced ability to migrate toward the chemokine (C-C motif) ligand 21. Fewer DCs also accumulated in the peritoneal cavity of UV-chimeric mice (ie, mice transplanted with BM from UV-irradiated mice) after injection of an inflammatory stimulus into that site. We hypothesized that different metabolic states underpin altered DC motility. Compared with DCs from the BM of nonirradiated mice, those from UV-irradiated mice produced more lactate, consumed more glucose, and had greater glycolytic flux in a bioenergetics stress test. Greater expression of 3-hydroxyanthranilate 3,4-dioxygenase was identified as a potential contributor to increased glycolysis. Inhibition of 3-hydroxyanthranilate 3,4-dioxygenase by 6-chloro-dl-tryptophan prevented both increased lactate production and reduced migration toward chemokine (C-C motif) ligand 21 by DCs differentiated from BM of UV-irradiated mice. UV-induced prostaglandin E2 has been implicated as an intermediary in the effects of UV radiation on BM cells. DCs differentiating from BM cells pulsed in vitro for 2 hours with dimethyl prostaglandin E2 were functionally similar to those from the BM of UV-irradiated mice. Reduced migration of DCs to lymph nodes associated with increased glycolytic flux may contribute to their reduced ability to initiate new immune responses in UV-irradiated mice.


Assuntos
Células da Medula Óssea/citologia , Movimento Celular/efeitos da radiação , Células Dendríticas/citologia , Glicólise/fisiologia , Pele/efeitos da radiação , Raios Ultravioleta , Animais , Células da Medula Óssea/metabolismo , Células Dendríticas/metabolismo , Dinoprostona/metabolismo , Glucose/metabolismo , Ácido Láctico/metabolismo , Camundongos , Pele/metabolismo
5.
Cancers (Basel) ; 9(6)2017 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-28629162

RESUMO

Macrophages interact with cells in every organ to facilitate tissue development, function and repair. However, the close interaction between macrophages and parenchymal cells can be subverted in disease, particularly cancer. Motility is an essential capacity for macrophages to be able to carry out their various roles. In cancers, the macrophage's interstitial migratory ability is frequently co-opted by tumor cells to enable escape from the primary tumor and metastatic spread. Macrophage accumulation within and movement through a tumor is often stimulated by tumor cell production of the mononuclear phagocytic growth factor, colony-stimulating factor-1 (CSF-1). CSF-1 also regulates macrophage survival, proliferation and differentiation, and its many effects are transduced by its receptor, the CSF-1R, via phosphotyrosine motif-activated signals. Mutational analysis of CSF-1R signaling indicates that the major mediators of CSF-1-induced motility are phosphatidyl-inositol-3 kinase (PI3K) and one or more Src family kinase (SFK), which activate signals to adhesion, actin polymerization, polarization and, ultimately, migration and invasion in macrophages. The macrophage transcriptome, including that of the motility machinery, is very complex and highly responsive to the environment, with selective expression of proteins and splice variants rarely found in other cell types. Thus, their unique motility machinery can be specifically targeted to block macrophage migration, and thereby, inhibit tumor invasion and metastasis.

6.
J Leukoc Biol ; 100(1): 163-75, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26747837

RESUMO

A major role of colony-stimulating factor-1 is to stimulate the differentiation of mononuclear phagocytic lineage cells into adherent, motile, mature macrophages. The colony-stimulating factor-1 receptor transduces colony-stimulating factor-1 signaling, and we have shown previously that phosphatidylinositol 3-kinase p110δ is a critical mediator of colony-stimulating factor-1-stimulated motility through the colony-stimulating factor-1 receptor pY721 motif. Src family kinases are also implicated in the regulation of macrophage motility and in colony-stimulating factor-1 receptor signaling, although functional redundancy of the multiple SFKs expressed in macrophages makes it challenging to delineate their specific functions. We report a comprehensive analysis of individual Src family kinase expression in macrophage cell lines and primary macrophages and demonstrate colony-stimulating factor-1-induced changes in Src family kinase subcellular localization, which provides clues to their distinct and redundant functions in macrophages. Moreover, expression of individual Src family kinases is both species specific and dependent on colony-stimulating factor-1-induced macrophage differentiation. Hck associated with the activated colony-stimulating factor-1 receptor, whereas Lyn associated with the receptor in a constitutive manner. Consistent with this, inhibitor studies revealed that Src family kinases were important for both colony-stimulating factor-1 receptor activation and colony-stimulating factor-1-induced macrophage spreading, motility, and invasion. Distinct colony-stimulating factor-1-induced changes in the subcellular localization of individual SFKs suggest specific roles for these Src family kinases in the macrophage response to colony-stimulating factor-1.


Assuntos
Movimento Celular/efeitos dos fármacos , Fator Estimulador de Colônias de Macrófagos/farmacologia , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Quinases da Família src/metabolismo , Animais , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Humanos , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Fosforilação , Receptor de Fator Estimulador de Colônias de Macrófagos/metabolismo , Transdução de Sinais/efeitos dos fármacos , Frações Subcelulares
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...