Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Genome Biol Evol ; 16(5)2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38788745

RESUMO

Adaptation to extreme environments often involves the evolution of dramatic physiological changes. To better understand how organisms evolve these complex phenotypic changes, the repeatability and predictability of evolution, and possible constraints on adapting to an extreme environment, it is important to understand how adaptive variation has evolved. Poeciliid fishes represent a particularly fruitful study system for investigations of adaptation to extreme environments due to their repeated colonization of toxic hydrogen sulfide-rich springs across multiple species within the clade. Previous investigations have highlighted changes in the physiology and gene expression in specific species that are thought to facilitate adaptation to hydrogen sulfide-rich springs. However, the presence of adaptive nucleotide variation in coding and regulatory regions and the degree to which convergent evolution has shaped the genomic regions underpinning sulfide tolerance across taxa are unknown. By sampling across seven independent lineages in which nonsulfidic lineages have colonized and adapted to sulfide springs, we reveal signatures of shared evolutionary rate shifts across the genome. We found evidence of genes, promoters, and putative enhancer regions associated with both increased and decreased convergent evolutionary rate shifts in hydrogen sulfide-adapted lineages. Our analysis highlights convergent evolutionary rate shifts in sulfidic lineages associated with the modulation of endogenous hydrogen sulfide production and hydrogen sulfide detoxification. We also found that regions with shifted evolutionary rates in sulfide spring fishes more often exhibited convergent shifts in either the coding region or the regulatory sequence of a given gene, rather than both.


Assuntos
Adaptação Fisiológica , Evolução Molecular , Sulfeto de Hidrogênio , Animais , Sulfeto de Hidrogênio/metabolismo , Adaptação Fisiológica/genética , Sequências Reguladoras de Ácido Nucleico , Filogenia , Poecilia/genética
2.
Ecol Lett ; 27(2): e14382, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38361474

RESUMO

Differentiation of foraging traits among predator populations may help explain observed variation in the structure of prey communities. However, few studies have investigated the phenotypic effects of predators on their prey in natural communities. Here, we use a comparative analysis of 78 Greenlandic lakes to examine how foraging trait variation among threespine stickleback populations can help explain variation in zooplankton community composition among lakes. We find that landscape-scale variation in zooplankton composition was jointly explained by lake properties, such as size and water chemistry, and the presence and absence of both stickleback and arctic char. Additional variation in zooplankton community structure can be explained by stickleback jaw protrusion, a trait with known utility for foraging on zooplankton, but only in lakes where stickleback co-occur with arctic char. Overall, our results illustrate how trait variation of predators, alongside other ecosystem properties, can influence the composition of prey communities in nature.


Assuntos
Ecossistema , Smegmamorpha , Animais , Zooplâncton , Peixes , Lagos , Comportamento Predatório
3.
Mol Ecol ; 32(18): 5042-5054, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37548336

RESUMO

Hydrogen sulfide is a toxic gas that disrupts numerous biological processes, including energy production in the mitochondria, yet fish in the Poecilia mexicana species complex have independently evolved sulfide tolerance several times. Despite clear evidence for convergence at the phenotypic level in these fishes, it is unclear if the repeated evolution of hydrogen sulfide tolerance is the result of similar genomic changes. To address this gap, we used a targeted capture approach to sequence genes associated with sulfide processes and toxicity from five sulfidic and five nonsulfidic populations in the species complex. By comparing sequence variation in candidate genes to a reference set, we identified similar population structure and differentiation, suggesting that patterns of variation in most genes associated with sulfide processes and toxicity are due to demographic history and not selection. But the presence of tree discordance for a subset of genes suggests that several loci are evolving divergently between ecotypes. We identified two differentiation outlier genes that are associated with sulfide detoxification in the mitochondria that have signatures of selection in all five sulfidic populations. Further investigation into these regions identified long, shared haplotypes among sulfidic populations. Together, these results reveal that selection on standing genetic variation in putatively adaptive genes may be driving phenotypic convergence in this species complex.


Assuntos
Extremófilos , Sulfeto de Hidrogênio , Poecilia , Animais , Sulfeto de Hidrogênio/toxicidade , Ecossistema , Sulfetos , Poecilia/genética , Variação Genética/genética , Seleção Genética
4.
Ecol Evol ; 12(4): e8862, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35494499

RESUMO

Trait expression of natural populations often jointly depends on prevailing abiotic environmental conditions and predation risk. Copepods, for example, can vary their expression of compounds that confer protection against ultraviolet radiation (UVR), such as astaxanthin and mycosporine-like amino acids (MAAs), in relation to predation risk. Despite ample evidence that copepods accumulate less astaxanthin in the presence of predators, little is known about how the community composition of planktivorous fish can affect the overall expression of photoprotective compounds. Here, we investigate how the (co-)occurrence of Arctic charr (Salvelinus alpinus) and threespine stickleback (Gasterosteus aculeatus) affects the photoprotective phenotype of the copepod Leptodiaptomus minutus in lake ecosystems in southern Greenland. We found that average astaxanthin and MAA contents were lowest in lakes with stickleback, but we found no evidence that these photoprotective compounds were affected by the presence of charr. Furthermore, variance in astaxanthin among individual copepods was greatest in the presence of stickleback and the astaxanthin content of copepods was negatively correlated with increasing stickleback density. Overall, we show that the presence and density of stickleback jointly affect the content of photoprotective compounds by copepods, illustrating how the community composition of predators in an ecosystem can determine the expression of prey traits that are also influenced by abiotic stressors.

5.
Trends Ecol Evol ; 37(6): 488-496, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35183376

RESUMO

The field of paleolimnology has made tremendous progress in reconstructing past biotic and abiotic environmental conditions of aquatic ecosystems based on sediment records. This, together with the rapid development of molecular technologies, provides new opportunities for studying evolutionary processes affecting lacustrine communities over multicentennial to millennial timescales. From an evolutionary perspective, such analyses provide important insights into the chronology of past environmental conditions, the dynamics of phenotypic evolution, and species diversification. Here, we review recent advances in paleolimnological, paleogenetic, and molecular approaches and highlight how their integrative use can help us better understand the ecological and evolutionary responses of species and communities to environmental change.


Assuntos
Evolução Biológica , Ecossistema
6.
Ecol Lett ; 24(12): 2549-2562, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34553481

RESUMO

The trophic structure of food webs is primarily determined by the variation in trophic position among species and individuals. Temporal dynamics of food web structure are central to our understanding of energy and nutrient fluxes in changing environments, but little is known about how evolutionary processes shape trophic position variation in natural populations. We propose that trophic position, whose expression depends on both environmental and genetic determinants of the diet variation in individual consumers, is a quantitative trait that can evolve via natural selection. Such evolution can occur either when trophic position is correlated with other heritable morphological and behavioural traits under selection, or when trophic position is a target of selection, which is possible if the fitness effects of prey items are heterogeneously distributed along food chains. Recognising trophic position as an evolving trait, whose expression depends on the food web context, provides an important conceptual link between behavioural foraging theory and food web dynamics, and a useful starting point for the integration of ecological and evolutionary studies of trophic position.


Assuntos
Dieta , Cadeia Alimentar , Humanos , Estado Nutricional , Fenótipo
7.
Mol Ecol Resour ; 21(3): 653-660, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33314612

RESUMO

Technological advances in DNA sequencing over the last decade now permit the production and curation of large genomic data sets in an increasing number of nonmodel species. Additionally, these new data provide the opportunity for combining data sets, resulting in larger studies with a broader taxonomic range. Whilst the development of new sequencing platforms has been beneficial, resulting in a higher throughput of data at a lower per-base cost, shifts in sequencing technology can also pose challenges for those wishing to combine new sequencing data with data sequenced on older platforms. Here, we outline the types of studies where the use of curated data might be beneficial, and highlight potential biases that might be introduced by combining data from different sequencing platforms. As an example of the challenges associated with combining data across sequencing platforms, we focus on the impact of the shift in Illumina's base calling technology from a four-channel system to a two-channel system. We caution that when data are combined from these two systems, erroneous guanine base calls that result from the two-channel chemistry can make their way through a bioinformatic pipeline, eventually leading to inaccurate and potentially misleading conclusions. We also suggest solutions for dealing with such potential artefacts, which make samples sequenced on different sequencing platforms appear more differentiated from one another than they really are. Finally, we stress the importance of archiving tissue samples and the associated sequences for the continued reproducibility and reusability of sequencing data in the face of ever-changing sequencing platform technology.


Assuntos
Biologia Computacional , Genômica , Sequenciamento de Nucleotídeos em Larga Escala , Análise de Sequência de DNA , Biologia Computacional/tendências , Genômica/tendências , Reprodutibilidade dos Testes
8.
J Dent Educ ; 85(5): 642-651, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33332594

RESUMO

PURPOSE: To evaluate the outcomes of a dental pipeline program at strengthening dental school applications, growing the diversity of dental students, and increasing access to care METHODS: This program evaluation used a descriptive and quasi-experimental retrospective study design. Researchers analyzed secondary data, from a dental pipeline program, for the years 2011-2018. Descriptive statistics were used to describe short-term and intermediate outcomes and impact. Associations were tested using paired t-test, 2-sample t-test, analysis of variance, and chi-squared test RESULTS: Ninety-eight scholars completed the 10-week program. The majority of scholars were female (70%), non-Hispanic or Latino (76%), non-White (72%), and pursuing baccalaureate degrees (94%). After completing the program, the mean Dental Admission Test (DAT) Academic Average Score (AAS) increased (16.0 vs. 17.5, P < 0.01). Significant associations were revealed between post-program DAT AAS and being accepted into dental school (P = 0.02). Associations remained when stratified by gender (male P = 0.01) and ethnicity (P = 0.03). The majority of scholars (71%) applied to the host school. Over half of the scholars matriculated to dental school (55%). Twenty-nine scholars (30%) graduated from the host school. Graduates report choosing careers in private practice (38%), public health (24%), corporate dentistry (17%), and the military (3%) CONCLUSION: Dental pipeline programs are effective at strengthening dental school applications, increasing DAT AAS, growing the diversity of dental students, and increasing access to care. Dental education needs to examine barriers dental pipeline programs do not typically address, such as the high cost of applying to dental school, and identify additional ways to support underrepresented minority students entering into dentistry.


Assuntos
Hispânico ou Latino , Grupos Minoritários , Diversidade Cultural , Feminino , Acessibilidade aos Serviços de Saúde , Humanos , Masculino , Avaliação de Programas e Projetos de Saúde , Estudos Retrospectivos , Estudantes
9.
Proc Natl Acad Sci U S A ; 117(28): 16424-16430, 2020 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-32586956

RESUMO

Extreme environments test the limits of life; yet, some organisms thrive in harsh conditions. Extremophile lineages inspire questions about how organisms can tolerate physiochemical stressors and whether the repeated colonization of extreme environments is facilitated by predictable and repeatable evolutionary innovations. We identified the mechanistic basis underlying convergent evolution of tolerance to hydrogen sulfide (H2S)-a toxicant that impairs mitochondrial function-across evolutionarily independent lineages of a fish (Poecilia mexicana, Poeciliidae) from H2S-rich springs. Using comparative biochemical and physiological analyses, we found that mitochondrial function is maintained in the presence of H2S in sulfide spring P. mexicana but not ancestral lineages from nonsulfidic habitats due to convergent adaptations in the primary toxicity target and a major detoxification enzyme. Genome-wide local ancestry analyses indicated that convergent evolution of increased H2S tolerance in different populations is likely caused by a combination of selection on standing genetic variation and de novo mutations. On a macroevolutionary scale, H2S tolerance in 10 independent lineages of sulfide spring fishes across multiple genera of Poeciliidae is correlated with the convergent modification and expression changes in genes associated with H2S toxicity and detoxification. Our results demonstrate that the modification of highly conserved physiological pathways associated with essential mitochondrial processes mediates tolerance to physiochemical stress. In addition, the same pathways, genes, and-in some instances-codons are implicated in H2S adaptation in lineages that span 40 million years of evolution.


Assuntos
Evolução Molecular , Mitocôndrias/metabolismo , Poecilia/fisiologia , Adaptação Fisiológica , Animais , Ecossistema , Ambientes Extremos , Genoma , Sulfeto de Hidrogênio/metabolismo , Mitocôndrias/genética , Filogenia , Poecilia/genética
10.
Integr Comp Biol ; 59(4): 856-863, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31504533

RESUMO

Eukaryotes are the outcome of an ancient symbiosis and as such, eukaryotic cells fundamentally possess two genomes. As a consequence, gene products encoded by both nuclear and mitochondrial genomes must interact in an intimate and precise fashion to enable aerobic respiration in eukaryotes. This genomic architecture of eukaryotes is proposed to necessitate perpetual coevolution between the nuclear and mitochondrial genomes to maintain coadaptation, but the presence of two genomes also creates the opportunity for intracellular conflict. In the collection of papers that constitute this symposium volume, scientists working in diverse organismal systems spanning vast biological scales address emerging topics in integrative, comparative biology in light of mitonuclear interactions.


Assuntos
Coevolução Biológica , Núcleo Celular/fisiologia , Eucariotos/fisiologia , Genoma Mitocondrial/fisiologia , Adaptação Biológica , Núcleo Celular/genética , Eucariotos/genética , Genoma Mitocondrial/genética
11.
Philos Trans R Soc Lond B Biol Sci ; 374(1777): 20180240, 2019 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-31154969

RESUMO

The molecular basis of convergent phenotypes is often unknown. However, convergence at a genomic level is predicted when there are large population sizes, gene flow among diverging lineages or strong genetic constraints. We used whole-genome resequencing to investigate genomic convergence in fishes ( Poecilia spp.) that have repeatedly colonized hydrogen sulfide (H2S)-rich environments in Mexico. We identified genomic similarities in both single nucleotide polymorphisms (SNPs) and structural variants (SVs) among independently derived sulfide spring populations, with approximately 1.2% of the genome being shared among sulfidic ecotypes. We compared these convergent genomic regions to candidate genes for H2S adaptation identified from transcriptomic analyses and found that a significant proportion of these candidate genes (8%) were also in regions where sulfidic individuals had similar SNPs, while only 1.7% were in regions where sulfidic individuals had similar SVs. Those candidate genes included genes involved in sulfide detoxification, the electron transport chain (the main toxicity target of H2S) and other processes putatively important for adaptation to sulfidic environments. Regional genomic similarity across independent populations exposed to the same source of selection is consistent with selection on standing variation or introgression of adaptive alleles across divergent lineages. However, combined with previous analyses, our data also support that adaptive changes in mitochondrially encoded subunits arose independently via selection on de novo mutations. Pressing questions remain on what conditions ultimately facilitate the independent rise of adaptive alleles at the same loci in separate populations, and thus, the degree to which evolution is repeatable or predictable. This article is part of the theme issue 'Convergent evolution in the genomics era: new insights and directions'.


Assuntos
Evolução Molecular , Extremófilos/genética , Poecilia/genética , Adaptação Fisiológica , Animais , Extremófilos/classificação , Extremófilos/fisiologia , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Fluxo Gênico , Genômica , Sulfeto de Hidrogênio/metabolismo , México , Filogenia , Poecilia/classificação , Poecilia/fisiologia , Polimorfismo de Nucleotídeo Único
12.
Evolution ; 73(6): 1200-1212, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30989642

RESUMO

Divergence of genital traits among lineages has the potential to serve as a reproductive isolating barrier when copulation, insemination, and fertilization are inhibited by incompatibilities between female and male genitalia. Despite widespread evidence for genital trait diversity among closely related lineages and coevolution of female and male genitalia within lineages, few studies have investigated genital evolution during the early stages of speciation. We quantified genital variation in replicated population pairs of Poecilia mexicana with ongoing ecological speciation between sulfidic (H2 S containing) and nearby nonsulfidic habitats. These analyses revealed rapid and correlated divergence of female and male genitalia across evolutionarily independent population pairs exposed to divergent selection regimes. Both sexes exhibited convergent evolution of genital traits among populations inhabiting similar habitat types. Our results demonstrate that genital evolution can occur during the early stages of speciation-with-gene-flow, potentially as a result of variation in the intensity of sexual conflict among populations. Our results suggest genitalia may contribute to early stages of divergence and challenge the generality of previously suggested mechanisms of genital evolution in poeciliids.


Assuntos
Especiação Genética , Genitália Feminina/anatomia & histologia , Genitália Masculina/anatomia & histologia , Poecilia/anatomia & histologia , Poecilia/genética , Animais , Ecossistema , Feminino , Fluxo Gênico , Masculino
13.
Genome ; 61(4): 273-286, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29227751

RESUMO

Hydrogen sulfide (H2S) is a natural toxicant in some aquatic environments that has diverse molecular targets. It binds to oxygen transport proteins, rendering them non-functional by reducing oxygen-binding affinity. Hence, organisms permanently inhabiting H2S-rich environments are predicted to exhibit adaptive modifications to compensate for the reduced capacity to transport oxygen. We investigated 10 lineages of fish of the family Poeciliidae that have colonized freshwater springs rich in H2S-along with related lineages from non-sulfidic environments-to test hypotheses about the expression and evolution of oxygen transport genes in a phylogenetic context. We predicted shifts in the expression of and signatures of positive selection on oxygen transport genes upon colonization of H2S-rich habitats. Our analyses indicated significant shifts in gene expression for multiple hemoglobin genes in lineages that have colonized H2S-rich environments, and three hemoglobin genes exhibited relaxed selection in sulfidic compared to non-sulfidic lineages. However, neither changes in gene expression nor signatures of selection were consistent among all lineages in H2S-rich environments. Oxygen transport genes may consequently be predictable targets of selection during adaptation to sulfidic environments, but changes in gene expression and molecular evolution of oxygen transport genes in H2S-rich environments are not necessarily repeatable across replicated lineages.


Assuntos
Ciprinodontiformes/genética , Ecossistema , Proteínas de Peixes/genética , Sulfeto de Hidrogênio/metabolismo , Proteínas de Membrana Transportadoras/genética , Oxigênio/metabolismo , Adaptação Fisiológica/genética , Animais , Ciprinodontiformes/classificação , República Dominicana , Evolução Molecular , Proteínas de Peixes/metabolismo , Florida , Água Doce , Perfilação da Expressão Gênica , Geografia , Proteínas de Membrana Transportadoras/metabolismo , México , Filogenia
14.
Mol Ecol ; 26(19): 4920-4934, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28731545

RESUMO

Populations with limited ranges can be highly vulnerable to changes in their environment and are, thus, of high conservation concern. Populations that experience human-induced range reductions are often highly inbred and lack genetic diversity, but it is unknown whether this is also the case for populations with naturally small ranges. The fishes Poecilia sulphuraria (listed as critically endangered) and Poecilia thermalis, which are endemic to small hydrogen sulphide-rich springs in southern Mexico, are examples of such populations with inherently small habitats. We used geometric morphometrics and population genetics to quantify phenotypic and genetic variation within and among two populations of P. sulphuraria and one population of P. thermalis. Principal component analyses revealed phenotypic and genetic differences among the populations. Evidence for inbreeding was low compared to populations that have undergone habitat reduction. The genetic data were also used to infer the demographic history of these populations to obtain estimates for effective population sizes and migration rates. Effective population sizes were large given the small habitats of these populations. Our results imply that these three endemic extremophile populations should each be considered separately for conservation purposes. Additionally, this study suggests that populations in naturally small habitats may have lower rates of inbreeding and higher genetic diversity than expected, and therefore may be better equipped to handle environmental perturbations than anticipated. We caution, however, that the inferred lack of inbreeding and the large effective population sizes could potentially be a result of colonization by genetically diverse ancestors.


Assuntos
Variação Genética , Genética Populacional , Endogamia , Poecilia/genética , Animais , Mapeamento Cromossômico , DNA Mitocondrial/genética , Ecossistema , Feminino , Sulfeto de Hidrogênio , Funções Verossimilhança , México , Modelos Genéticos , Fenótipo , Polimorfismo de Nucleotídeo Único , Densidade Demográfica , Análise de Componente Principal
15.
Evolution ; 70(12): 2809-2822, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27718237

RESUMO

Assortative mating is critical for reproductive isolation during speciation; however, the mechanisms underlying mating preferences are often unknown. Assortative mating can be mediated through preferences for condition-dependent and adaptive ("magic") traits, but rigorously testing these hypotheses has been impeded by trait covariation in living organisms. We used computer-generated models to examine the role of body shape in producing association preferences between fish populations undergoing ecological speciation in different habitat types. We demonstrate that body shape can serve as an adaptive trait (variation in head size between populations) and a condition-dependent signal (variation in abdominal distention among individuals). Female preferences for stimuli varying in only one aspect of body shape uncovered evidence for body shape as a magic trait across population pairs, but no evidence for body shape serving as a condition-dependent signal. Evolution of preferences only in females from one habitat type as well as stronger preferences in sympatric nonsulfidic as opposed to allopatric nonsulfidic populations suggests that reinforcement may have played a role in producing the observed patterns.


Assuntos
Ecossistema , Preferência de Acasalamento Animal , Fenótipo , Poecilia/fisiologia , Simpatria , Animais , Feminino , Masculino , México , Poecilia/anatomia & histologia , Isolamento Reprodutivo
16.
Physiol Biochem Zool ; 88(4): 371-83, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26052634

RESUMO

Variation in energy availability or maintenance costs in extreme environments can exert selection for efficient energy use, and reductions in organismal energy demand can be achieved in two ways: reducing body mass or metabolic suppression. Whether long-term exposure to extreme environmental conditions drives adaptive shifts in body mass or metabolic rates remains an open question. We studied body size variation and variation in routine metabolic rates in locally adapted populations of extremophile fish (Poecilia mexicana) living in toxic, hydrogen sulfide-rich springs and caves. We quantified size distributions and routine metabolic rates in wild-caught individuals from four habitat types. Compared with ancestral populations in nonsulfidic surface habitats, extremophile populations were characterized by significant reductions in body size. Despite elevated metabolic rates in cave fish, the body size reduction precipitated in significantly reduced energy demands in all extremophile populations. Laboratory experiments on common garden-raised fish indicated that elevated routine metabolic rates in cave fish likely have a genetic basis. The results of this study indicate that adaptation to extreme environments directly impacts energy metabolism, with fish living in cave and sulfide spring environments expending less energy overall during routine metabolism.


Assuntos
Tamanho Corporal , Poecilia/anatomia & histologia , Poecilia/metabolismo , Adaptação Fisiológica , Animais , Metabolismo Basal , Cavernas , Ecossistema , Sulfeto de Hidrogênio , Poecilia/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...