Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 5801, 2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-37726306

RESUMO

Dynamically controlling friction in micro- and nanoscale devices is possible using applied electrical bias between contacting surfaces, but this can also induce unwanted reactions which can affect device performance. External electric fields provide a way around this limitation by removing the need to apply bias directly between the contacting surfaces. 2D materials are promising candidates for this approach as their properties can be easily tuned by electric fields and they can be straightforwardly used as surface coatings. This work investigates the friction between single layer graphene and an atomic force microscope tip under the influence of external electric fields. While the primary effect in most systems is electrostatically controllable adhesion, graphene in contact with semiconducting tips exhibits a regime of unexpectedly enhanced and highly tunable friction. The origins of this phenomenon are discussed in the context of fundamental frictional dissipation mechanisms considering stick slip behavior, electron-phonon coupling and viscous electronic flow.

2.
ACS Nano ; 15(6): 10095-10106, 2021 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-34114798

RESUMO

Understanding modulation of liquid molecule slippage along graphene surfaces is crucial for many promising applications of two-dimensional materials, such as in sensors, nanofluidic devices, and biological systems. Here, we use force measurements by atomic force microscopy (AFM) to directly measure hydrodynamic, solvation, and frictional forces along the graphene plane in seven liquids. The results show that the greater slip lengths correlate with the interfacial ordering of the liquid molecules, which suggests that the ordering of the liquid forming multiple layers promotes slip. This phenomenon appears to be more relevant than solely the wetting behavior of graphene or the solid-liquid interaction energy, as traditionally assumed. Furthermore, the slip boundary condition of the liquids along the graphene plane is sensitive to the substrate underneath graphene, indicating that the underlying substrate affects graphene's interaction with the liquid molecules. Because interfacial slip can have prominent consequences on the pressure drop, on electrical and diffusive transport through nanochannels, and on lubrication, this work can inspire innovation in many applications through the modulation of the substrate underneath graphene and of the interfacial ordering of the liquid.

3.
ACS Nano ; 13(2): 2072-2082, 2019 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-30629408

RESUMO

Understanding modulation of water molecule slippage along graphene surfaces is crucial for many promising applications of two-dimensional materials. Here, we examine normal and shear forces on supported single-layer graphene using atomic force microscopy and find that the electrolyte composition affects the molecular slippage of nanometer thick films of aqueous electrolytes along the graphene surface. In light of the shear-assisted thermally activated theory, water molecules along the graphene plane are very mobile when subjected to shear. However, upon addition of an electrolyte, the cations can make water stick to graphene, while ion-specific and concentration effects are present. Recognizing the tribological and tribochemical utility of graphene, we also evaluate the impact of this behavior on its frictional response in the presence of water. It appears that the addition of an electrolyte to pure water causes a reduction of the thermal activation energy and of the shear-activation length at several concentrations, both results conversely affecting the friction force. Further, this work can inspire innovation in research areas where changes of the molecular slippage through the modulation of the doping characteristics of graphene in liquid environment can be of use, including molecular sensing, lubrication, and energy storage.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA