Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Infect Immun ; 83(1): 292-9, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25368115

RESUMO

Shigella spp. are causative agents of bacillary dysentery, a human illness with high global morbidity levels, particularly among elderly and infant populations. Shigella infects via the fecal-oral route, and its virulence is dependent upon a type III secretion system (T3SS). Two components of the exposed needle tip complex of the Shigella T3SS, invasion plasmid antigen D (IpaD) and IpaB, have been identified as broadly protective antigens in the mouse lethal pneumonia model. A recombinant fusion protein (DB fusion) was created by joining the coding sequences of IpaD and IpaB. The DB fusion is coexpressed with IpaB's cognate chaperone, IpgC, for proper recombinant expression. The chaperone can then be removed by using the mild detergents octyl oligooxyethelene (OPOE) or N,N-dimethyldodecylamine N-oxide (LDAO). The DB fusion in OPOE or LDAO was used for biophysical characterization and subsequent construction of an empirical phase diagram (EPD). The EPD showed that the DB fusion in OPOE is most stable at neutral pH below 55 °C. In contrast, the DB fusion in LDAO exhibited remarkable thermal plasticity, since this detergent prevents the loss of secondary and tertiary structures after thermal unfolding at 90 °C, as well as preventing thermally induced aggregation. Moreover, the DB fusion in LDAO induced higher interleukin-17 secretion and provided a higher protective efficacy in a mouse challenge model than did the DB fusion in OPOE. These data indicate that LDAO might introduce plasticity to the protein, promoting thermal resilience and enhanced protective efficacy, which may be important in its use as a subunit vaccine.


Assuntos
Antígenos de Bactérias/química , Antígenos de Bactérias/imunologia , Proteínas de Bactérias/química , Proteínas de Bactérias/imunologia , Vacinas Bacterianas/química , Vacinas Bacterianas/imunologia , Detergentes/química , Animais , Fenômenos Químicos/efeitos dos fármacos , Concentração de Íons de Hidrogênio , Camundongos , Estabilidade Proteica , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/imunologia , Temperatura
2.
J Pharm Sci ; 104(2): 424-32, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24916512

RESUMO

Bacterium-like particles (BLPs), derived from Lactococcus lactis, offer a self-adjuvanting delivery vehicle for subunit protein vaccines. Proteins can be specifically loaded onto the BLPs via a peptidoglycan anchoring (PA) domain. In this study, the tip proteins IpaD, SipD, and LcrV belonging to type III secretion systems of Shigella flexneri, Salmonella enterica, and Yersinia enterocolitica, respectively, were fused to the PA and loaded onto the BLPs. Herein, we biophysically characterized these nine samples and condensed the spectroscopic results into three-index empirical phase diagrams (EPDs). The EPDs show distinctions between the IpaD/SipD and LcrV subfamilies of tip proteins, based on their physical stability, even upon addition of the PA. Upon attachment to the BLPs, the BLPs become defining moiety in the spectroscopic measurements, leaving the tip proteins to have a subtle yet modulating effect on the structural integrity of the tip proteins-BLPs binding. In summary, this work provides a comprehensive view of physical stability of the tip proteins and tip protein-BLPs and serves as a baseline for screening of excipients to increase the stability of the tip protein-BLPs for future vaccine formulation.


Assuntos
Proteínas de Bactérias/química , Sistemas de Secreção Bacterianos , Lactococcus lactis/química , Vacinas de Subunidades Antigênicas/administração & dosagem , Vacinas de Subunidades Antigênicas/química , Fenômenos Biofísicos , Tamanho da Partícula
3.
Proteins ; 82(11): 3013-22, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25103195

RESUMO

Shigella flexneri causes bacillary dysentery, an important cause of mortality among children in the developing world. Shigella secretes effector proteins via its type III secretion system (T3SS) to promote bacterial uptake into human colonic epithelial cells. The T3SS basal body spans the bacterial cell envelope anchoring a surface-exposed needle. A pentamer of invasion plasmid antigen D lies at the nascent needle tip and invasion plasmid antigen B (IpaB) is recruited into the needle tip complex on exposure to bile salts. From here, IpaB forms a translocon pore in the host cell membrane. Although the mechanism by which IpaB inserts into the membrane is unknown, it was recently shown that recombinant IpaB can exist as either a monomer or tetramer. Both of these forms of IpaB associate with membranes, however, only the tetramer forms pores in liposomes. To reveal differences between these membrane-binding events, Cys mutations were introduced throughout IpaB, allowing site-specific fluorescence labeling. Fluorescence quenching was used to determine the influence of oligomerization and/or membrane association on the accessibility of different IpaB regions to small solutes. The data show that the hydrophobic region of tetrameric IpaB is more accessible to solvent relative to the monomer. The hydrophobic region appears to promote membrane interaction for both forms of IpaB, however, more of the hydrophobic region is protected from solvent for the tetramer after membrane association. Limited proteolysis demonstrated that changes in IpaB's oligomeric state may determine the manner by which it associates with phospholipid membranes and the subsequent outcome of this association.


Assuntos
Antígenos de Bactérias/química , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Substituição de Aminoácidos , Antígenos de Bactérias/genética , Antígenos de Bactérias/metabolismo , Proteínas de Bactérias/genética , Membrana Celular/química , Membrana Celular/metabolismo , Cisteína/genética , Escherichia coli/genética , Corantes Fluorescentes/química , Células HeLa/microbiologia , Hemólise , Interações Hospedeiro-Patógeno , Humanos , Interações Hidrofóbicas e Hidrofílicas , Lipossomos , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Mutação , Fosfolipídeos/química , Shigella flexneri/patogenicidade
4.
Protein Sci ; 22(5): 666-70, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23494968

RESUMO

Shigella spp. are the causative agent of shigellosis, the second leading cause of diarrhea in children of ages 2-5. Despite many years of research, a protective vaccine has been elusive. We recently demonstrated that invasion plasmid antigens B and D (IpaB and IpaD) provide protection against S. flexneri and S. sonnei. These proteins, however, have very different properties which must be recognized and then managed during vaccine formulation. Herein, we employ spectroscopy to assess the stability of IpaB as well as IpgC (invasion protein gene), IpaB's cognate chaperone, and the IpaB/IpgC complex. The resulting data are mathematically summarized into a visual map illustrating the stability of the proteins and their complex as a function of pH and temperature. The IpaB/IpgC complex exhibits thermal stability at higher pH values but, though initially stable, quickly unfolds with increasing temperature when maintained at lower pH. In contrast, IpaB is a much more complex protein exhibiting increased stability at higher pH, but shows initial instability at lower pH values with pH 5 showing a distinct transition. IpgC precipitates at and below pH 5 and is stable above pH 7. Most strikingly, it is clear that complex formation results in stabilization of the two components. This work serves as a basis for the further development of IpaB as a vaccine candidate as well as extends our understanding of the structural stability of the Shigella type III secretion system.


Assuntos
Antígenos de Bactérias/química , Proteínas de Bactérias/química , Disenteria Bacilar/microbiologia , Chaperonas Moleculares/química , Shigella/química , Antígenos de Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , Criança , Dicroísmo Circular , Humanos , Concentração de Íons de Hidrogênio , Chaperonas Moleculares/metabolismo , Estabilidade Proteica , Desdobramento de Proteína , Shigella/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...