Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Br J Radiol ; 96(1149): 20220461, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37393541

RESUMO

OBJECTIVE: This study aims to analyse lung tumour motion and to investigate the correlation between the internal tumour motion acquired from four-dimensional computed tomography (4DCT) and the motion of an external surrogate. METHODS: A data set of 363 4DCT images was analysed. Tumours were classified based on their anatomical lobes. The recorded gross tumour volume (GTV) information included the centroid GTV motion in the superior-inferior, anteroposterior and left-right directions, and in three-dimensions (3D). For the internal/external correlation, the RPM surrogate breathing signals of 260 patients were analysed via an in-house script. The external motion was correlated with the 3D centroid motion, and the maximum tumour motion via Spearman's correlation. The effect of tumour volume on the amount of motion was evaluated. RESULTS: The greatest 3D tumour amplitude was found for tumours located in the lower part of the lung, with a maximum of 26.7 mm. The Spearman's correlation of the internal 3D motion was weak in the upper (r = 0.21) and moderate in the middle (r = 0.51) and the lower (r = 0.52) lobes. There was no obvious difference in the correlation coefficients between the maximum tumour displacement and the centroid motion. No correlation was found between the tumour volume and the magnitude of motion. CONCLUSION: Our results suggest that tumour location can be a good predictor of its motion. However, tumour size is a poor predictor of the motion. ADVANCES IN KNOWLEDGE: This knowledge of the distribution of tumour motion throughout the thoracic regions will be valuable to research groups investigating the refinement of motion management strategies.


Assuntos
Neoplasias Pulmonares , Planejamento da Radioterapia Assistida por Computador , Humanos , Planejamento da Radioterapia Assistida por Computador/métodos , Pulmão/diagnóstico por imagem , Pulmão/patologia , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/patologia , Movimento (Física) , Respiração , Tomografia Computadorizada Quadridimensional/métodos , Movimento
2.
Phys Chem Chem Phys ; 25(24): 16238-16245, 2023 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-37232490

RESUMO

This paper describes a compact new instrument, conceived specifically for measurements of Photo Electron Elliptical Dichroism (PEELD) and designed for simplicity of use as a prototype for a practical analytical device. PEELD is an asymmetry in the electron angular distribution obtained from resonantly enhanced multi-photon ionisation of a chiral molecule, where there is also a non-linear dependence on the polarization ellipticity. Despite the fact that PEELD can provide a unique signature of molecular structure and dynamics it has only been investigated in a few molecules to date. This is addressed in the present study in a range of measurements of several terpenes and phenyl-alcohols. These show that the PEELD signatures in structural isomers can be dramatically different and can also be influenced by the intensity of the light. A systematic study in phenyl-alcohols containing the same chromophore and chiral centre configuration shows consistent PEELD behaviour across the molecules except that the magnitude reduces as the distance from the chromophore to the chiral centre increases. These achievements demonstrate that this relatively simple set up can be used for scientific studies as well as providing a blueprint for a practical chiral analysis instrument.

3.
Phys Chem Chem Phys ; 25(8): 6009-6015, 2023 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-36752555

RESUMO

We present an initial demonstration of a velocity-map imaging (VMI) experiment using a back-irradiation laser-based desorption source directly integrated into the electrode assembly. This has the potential to greatly expand the utility of the popular VMI approach by permitting its use with high density plumes of non-volatile molecular samples. Photoelectron circular dichroism measurements on the phenylalanine molecule using 400 nm multiphoton ionization are used to illustrate this novel method, revealing forward-backward emission asymmetries on the order of 7%.

4.
Commun Chem ; 4(1): 73, 2021 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-36697766

RESUMO

Sudden ionisation of a relatively large molecule can initiate a correlation-driven process dubbed charge migration, where the electron density distribution is expected to rapidly move along the molecular backbone. Capturing this few-femtosecond or attosecond charge redistribution would represent the real-time observation of electron correlation in a molecule with the enticing prospect of following the energy flow from a single excited electron to the other coupled electrons in the system. Here, we report a time-resolved study of the correlation-driven charge migration process occurring in the nucleic-acid base adenine after ionisation with a 15-35 eV attosecond pulse. We find that the production of intact doubly charged adenine - via a shortly-delayed laser-induced second ionisation event - represents the signature of a charge inflation mechanism resulting from many-body excitation. This conclusion is supported by first-principles time-dependent simulations. These findings may contribute to the control of molecular reactivity at the electronic, few-femtosecond time scale.

5.
Chirality ; 32(10): 1225-1233, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32700433

RESUMO

In this work, the photoionization of chiral molecules by an elliptically polarized, high repetition rate, femtosecond laser is probed. The resulting 3D photoelectron angular distribution shows a strong forward-backward asymmetry, which is highly dependent not only on the molecular structure but also on the ellipticity of the laser pulse. By continuously varying the laser ellipticity, we can observe molecular and enantiomer changes in real time at a previously unseen speed and precision. The technique allows enantiomeric excess of a pure compound to be measured with a 5% precision within 3 s, and a 10-min acquisition yields a precision of 0.4%. The isomers camphor and fenchone can be easily distinguished, unlike with conventional mass spectrometry. Preliminary results for the pharmaceutically interesting ibuprofen are also given, showing the capability of photoionization as a means of distinguishing larger molecular systems.

6.
Phys Chem Chem Phys ; 21(15): 8152-8160, 2019 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-30933211

RESUMO

We report the first excited state dynamics study of gas-phase 5,6-dihydroxyindole (5,6-DHI), a key building block of eumelanin pigments that are found throughout nature and serve as important photo-protective compounds. Time-resolved ion-yield measurements over the 241-296 nm ultraviolet photoexcitation region revealed non-adiabatic processes occurring on up to three distinct timescales. These reflect ultrafast (i.e. sub-picosecond) internal conversion within the excited state singlet manifold, and much longer-lived processes ranging from 10 ps to in excess of 1 ns. Our investigation paves the way for precisely targeted future studies of 5,6-DHI that exploit more differential measurement techniques. The work was facilitated by the use of soft laser-based thermal desorption to introduce 5,6-DHI samples into the gas phase. This approach, based on low-cost, readily available diode lasers, is straightforward, easily controllable and potentially applicable to a wide range of non-volatile molecular species.

7.
J Chem Phys ; 149(3): 034301, 2018 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-30037254

RESUMO

Wavelength-dependent measurements of the RNA base uracil, undertaken with nanosecond ultraviolet laser pulses, have previously identified a fragment at m/z = 84 (corresponding to the C3H4N2O+ ion) at excitation wavelengths ≤232 nm. This has been interpreted as a possible signature of a theoretically predicted ultrafast ring-opening occurring on a neutral excited state potential energy surface. To further investigate the dynamics of this mechanism, and also the non-adiabatic dynamics operating more generally in uracil, we have used a newly built ultra-high vacuum spectrometer incorporating a laser-based thermal desorption source to perform time-resolved ion-yield measurements at pump wavelengths of 267 nm, 220 nm, and 200 nm. We also report complementary data obtained for the related species 2-thiouracil following 267 nm excitation. Where direct comparisons can be made (267 nm), our findings are in good agreement with the previously reported measurements conducted on these systems using cold molecular beams, demonstrating that the role of initial internal energy on the excited state dynamics is negligible. Our 220 nm and 200 nm data also represent the first reported ultrafast study of uracil at pump wavelengths <250 nm, revealing extremely rapid (<200 fs) relaxation of the bright S3(1ππ*) state. These measurements do not, however, provide any evidence for the appearance of the m/z = 84 fragment within the first few hundred picoseconds following excitation. This key finding indicates that the detection of this specific species in previous nanosecond work is not directly related to an ultrafast ring-opening process. An alternative excited state process, operating on a more extended time scale, remains an open possibility.

8.
Phys Chem Chem Phys ; 17(36): 23643-50, 2015 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-26299204

RESUMO

The ultrafast photo-physical properties of DNA are crucial in providing a stable basis for life. Although the DNA bases efficiently absorb ultraviolet (UV) radiation, this energy can be dissipated to the surrounding environment by the rapid conversion of electronic energy to vibrational energy within about a picosecond. The intrinsic nature of this internal conversion process has previously been demonstrated through gas phase experiments on the bases, supported by theoretical calculations. De-excitation rates appear to be accelerated when individual bases are hydrogen bonded to solvent molecules or their complementary Watson-Crick pair. In this paper, the first gas-phase measurements of electronic relaxation in DNA nucleosides following UV excitation are reported. Using a pump-probe ionization scheme, the lifetimes for internal conversion to the ground state following excitation at 267 nm are found to be reduced by around a factor of two for adenosine, cytidine and thymidine compared with the isolated bases. These results are discussed in terms of a recent proposition that a charge transfer state provides an additional internal conversion pathway mediated by proton transfer through a sugar to base hydrogen bond.


Assuntos
DNA/química , Nucleosídeos/efeitos da radiação , Lasers , Nucleosídeos/química , Raios Ultravioleta , Volatilização
9.
Analyst ; 140(12): 4270-6, 2015 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-25929227

RESUMO

Many organic molecules have strong absorption bands which can be accessed by ultraviolet short pulse lasers to produce efficient ionization. This resonant multiphoton ionization scheme has already been exploited as an ionization source in time-of-flight mass spectrometers used for environmental trace analysis. In the present work we quantify the ultimate potential of this technique by measuring absolute ion yields produced from the interaction of 267 nm femtosecond laser pulses with the organic molecules indole and toluene, and gases Xe, N2 and O2. Using multiphoton ionization cross sections extracted from these results, we show that the laser pulse parameters required for real-time detection of aromatic molecules at concentrations of one part per trillion in air and a limit of detection of a few attomoles are achievable with presently available commercial laser systems. The potential applications for the analysis of human breath, blood and tissue samples are discussed.

10.
Phys Chem Chem Phys ; 17(11): 7172-80, 2015 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-25691342

RESUMO

The four DNA nucleosides guanosine, adenosine, cytidine and thymidine have been produced in the gas phase by a laser thermal desorption source, and irradiated by a beam of protons with 5 keV kinetic energy. The molecular ions as well as energetic neutrals formed have been analyzed by mass spectrometry in order to shed light on the ionization and fragmentation processes triggered by proton collision. A range of 8-20 eV has been estimated for the binding energy of the electron captured by the proton. Glycosidic bond cleavage between the base and sugar has been observed with a high probability for all nucleosides, resulting in predominantly intact base ions for guanosine, adenosine, and cytidine but not for thymidine where intact sugar ions are dominant. This behavior is influenced by the ionization energies of the nucleobases (G < A < C < T), which seems to determine the localization of the charge following the initial ionization. This charge transfer process can also be inferred from the production of protonated base ions, which have a similar dependence on the base ionization potential, although the base proton affinity might also play a role. Other dissociation pathways have also been identified, including further fragmentation of the base and sugar moieties for thymidine and guanosine, respectively, and partial breakup of the sugar ring without glycosidic bond cleavage mainly for adenosine and cytidine. These results show that charge localization following ionization by proton irradiation is important in determining dissociation channels of isolated nucleosides, which could in turn influence direct radiation damage in DNA.


Assuntos
DNA/química , Gases/química , Nucleosídeos/química , Prótons
11.
J Phys Chem Lett ; 5(20): 3588-92, 2014 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-26278614

RESUMO

The photophysics of the green fluorescent protein is governed by the electronic structure of the chromophore at the heart of its ß-barrel protein structure. We present the first two-color, resonance-enhanced, multiphoton ionization spectrum of the isolated neutral chromophore in vacuo with supporting electronic structure calculations. We find the absorption maximum to be 3.65 ± 0.05 eV (340 ± 5 nm), which is blue-shifted by 0.5 eV (55 nm) from the absorption maximum of the protein in its neutral form. Our results show that interactions between the chromophore and the protein have a significant influence on the electronic structure of the neutral chromophore during photoabsorption and provide a benchmark for the rational design of novel chromophores as fluorescent markers or photomanipulators.

12.
J Am Soc Mass Spectrom ; 24(9): 1366-75, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23817831

RESUMO

High power femtosecond laser pulses have unique properties that could lead to their application as ionization or activation sources in mass spectrometry. By concentrating many photons into pulse lengths approaching the timescales associated with atomic motion, very strong electric field strengths are generated, which can efficiently ionize and fragment molecules without the need for resonant absorption. However, the complex interaction between these pulses and biomolecular species is not well understood. To address this issue, we have studied the interaction of intense, femtosecond pulses with a number of amino acids and small peptides. Unlike previous studies, we have used neutral forms of these molecular targets, which allowed us to investigate dissociation of radical cations without the spectra being complicated by the action of mobile protons. We found fragmentation was dominated by fast, radical-initiated dissociation close to the charge site generated by the initial ionization or from subsequent ultrafast migration of this charge. Fragments with lower yields, which are useful for structural determinations, were also observed and attributed to radical migration caused by hydrogen atom transfer within the molecule.


Assuntos
Aminoácidos/química , Espectrometria de Massas/métodos , Peptídeos/química , Íons/química , Lasers , Modelos Moleculares
13.
J Phys Chem A ; 116(7): 1701-9, 2012 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-22268622

RESUMO

Nearby charges affect the electronic energy levels of chromophores, with the extent of the effect being determined by the magnitude of the charge and degree of charge-chromophore separation. The molecular configuration dictates the charge-chromophore distance. Hence, in this study, we aim to assess how the location of the charge influences the absorption of a set of model protonated and diprotonated peptide ions, and whether spectral differences are large enough to be identified. The studied ions were the dipeptide YK, the tripeptide KYK (Y = tyrosine; K = lysine) and their complexes with 18-crown-6-ether (CE). The CE targets the ammonium group by forming internal ionic hydrogen bonds and limits the folding of the peptide. In the tripeptide, the distance between the chromophore and the backbone ammonium is enlarged relative to that in the dipeptide. Experiments were performed in an electrostatic ion storage ring using a tunable laser system, and action spectra based on lifetime measurements were obtained in the range from 210 to 310 nm. The spectra are all quite similar though there seems to be some changes in the absorption band between 210 and 250 nm, while in the lower energy band all ions had a maximum absorption at ~275 nm. Lifetimes after photoexcitation were found to shorten upon protonation and lengthen upon CE complexation, in accordance with the increased number of degrees of freedom and an increase in activation energies for dissociation as the mobile proton model is no longer operative.


Assuntos
Peptídeos/química , Prótons , Tirosina/química , Absorção , Meia-Vida , Ligação de Hidrogênio , Dobramento de Proteína , Vácuo
14.
J Phys Chem Lett ; 3(24): 3751-4, 2012 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-26291106

RESUMO

We present the first direct measurement of ultrafast charge migration in a biomolecular building block - the amino acid phenylalanine. Using an extreme ultraviolet pulse of 1.5 fs duration to ionize molecules isolated in the gas phase, the location of the resulting hole was probed by a 6 fs visible/near-infrared pulse. By measuring the yield of a doubly charged ion as a function of the delay between the two pulses, the positive hole was observed to migrate to one end of the cation within 30 fs. This process is likely to originate from even faster coherent charge oscillations in the molecule being dephased by bond stretching which eventually localizes the final position of the charge. This demonstration offers a clear template for observing and controlling this phenomenon in the future.

15.
Analyst ; 137(1): 64-9, 2012 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-22068546

RESUMO

Mass spectra from the interaction of intense, femtosecond laser pulses with 1,3-butadiene, 1-butene, and n-butane have been obtained. The proportion of the fragment ions produced as a function of intensity, pulse length, and wavelength was investigated. Potential mass spectrometry applications, for example in the analysis of catalytic reaction products, are discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...