Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Genet ; 13: 910413, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36246641

RESUMO

Enteric methane emissions from ruminants account for ∼35% of New Zealand's greenhouse gas emissions. This poses a significant threat to the pastoral sector. Breeding has been shown to successfully lower methane emissions, and genomic prediction for lowered methane emissions has been introduced at the national level. The long-term genetic impacts of including low methane in ruminant breeding programs, however, are unknown. The success of the New Zealand sheep industry is currently heavily reliant on the prolificacy, fecundity and survival of adult ewes. The objective of this study was to determine genetic and phenotypic correlations between adult maternal ewe traits (live weight, body condition score, number of lambs born, litter survival to weaning, pregnancy scanning and fleece weight), faecal and Nematodirus egg counts and measures of methane in respiration chambers. More than 9,000 records for methane from over 2,200 sheep measured in respiration chambers were collected over 10 years. Sheep were fed on a restricted diet calculated as approximately twice the maintenance. Methane measures were converted to absolute daily emissions of methane measured in g per day (CH4/day). Two measures of methane yield were recorded: the ratio of CH4 to dry matter intake (g CH4/kg DMI; CH4/DMI) and the ratio of CH4 to total gas emissions (CH4/(CH4 + CO2)). Ewes were maintained in the flocks for at least two parities. Non-methane trait data from over 8,000 female relatives were collated to estimate genetic correlations. Results suggest that breeding for low CH4/DMI is unlikely to negatively affect faecal egg counts, adult ewe fertility and litter survival traits, with no evidence for significant genetic correlations. Fleece weight was unfavourably (favourably) correlated with CH4/DMI (rg = -0.21 ± 0.09). Live weight (rg = 0.3 ± 0.1) and body condition score (rg = 0.2 ± 0.1) were positively correlated with methane yield. Comparing the two estimates of methane yield, CH4/DMI had lower heritability and repeatability. However, correlations of both measures with adult ewe traits were similar. This suggests that breeding is a suitable mitigation strategy for lowering methane yield, but wool, live weight and fat deposition traits may be affected over time and should be monitored.

2.
J Anim Sci ; 96(8): 3031-3042, 2018 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-29741677

RESUMO

Methane (CH4) emission traits were previously found to be heritable and repeatable in sheep fed alfalfa pellets in respiration chambers (RC). More rapid screening methods are, however, required to increase genetic progress and to provide a cost-effective method to the farming industry for maintaining the generation of breeding values in the future. The objective of the current study was to determine CH4 and carbon dioxide (CO2) emissions using several 1-h portable accumulation chamber (PAC) measurements from lambs and again as ewes while grazing ryegrass-based pasture. Many animals with PAC measurements were also measured in RC while fed alfalfa pellets at 2.0 × maintenance metabolizable energy requirements (MEm). Heritability estimates from mixed models for CH4 and CO2 production (g/d) were 0.19 and 0.16, respectively, when measured using PAC with lambs; 0.20 and 0.27, respectively, when measured using PAC with ewes; and 0.23 and 0.34, respectively, when measured using RC with lambs. For measured gas traits, repeatabilities of measurements collected 14 d apart ranged from 0.33 to 0.55 for PAC (combined lambs and ewes) and were greater at 0.65 to 0.76 for the same traits measured using RC. Genetic correlations (rg) between PAC in lambs and ewes were 0.99 for CH4, 0.93 for CH4 + CO2, and 0.85 for CH4/(CH4 + CO2), suggesting that CH4 emissions in lambs and ewes are the same trait. Genetic correlations between PAC and RC measurements were lower, at 0.62 to 0.67 for CH4 and 0.41 to 0.42 for CH4 + CO2, likely reflecting different environmental conditions associated with the protocols used with the 2 measurement methods. The CH4/(CH4 + CO2) ratio was the most similar genetic trait measured using PAC (both lambs and ewes, 63% and 66% selection efficiency, respectively) compared with CH4 yield (g/kg DMI) measured using RC. These results suggest that PAC measurements have considerable value as a rapid low-cost method to estimate breeding values for CH4 emissions in sheep.


Assuntos
Dióxido de Carbono/metabolismo , Metano/metabolismo , Ovinos/metabolismo , Animais , Cruzamento , Dióxido de Carbono/análise , Feminino , Genótipo , Masculino , Medicago sativa , Metano/análise , Fenótipo , Respiração , Ovinos/genética
3.
BMC Genomics ; 7: 178, 2006 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-16846521

RESUMO

BACKGROUND: Currently most pastoral farmers rely on anthelmintic drenches to control gastrointestinal parasitic nematodes in sheep. Resistance to anthelmintics is rapidly increasing in nematode populations such that on some farms none of the drench families are now completely effective. It is well established that host resistance to nematode infection is a moderately heritable trait. This study was undertaken to identify regions of the genome, quantitative trait loci (QTL) that contain genes affecting resistance to parasitic nematodes. RESULTS: Rams obtained from crossing nematode parasite resistant and susceptible selection lines were used to derive five large half-sib families comprising between 348 and 101 offspring per sire. Total offspring comprised 940 lambs. Extensive measurements for a range of parasite burden and immune function traits in all offspring allowed each lamb in each pedigree to be ranked for relative resistance to nematode parasites. Initially the 22 most resistant and 22 most susceptible progeny from each pedigree were used in a genome scan that used 203 microsatellite markers spread across all sheep autosomes. This study identified 9 chromosomes with regions showing sufficient linkage to warrant the genotyping of all offspring. After genotyping all offspring with markers covering Chromosomes 1, 3, 4, 5, 8, 12, 13, 22 and 23, the telomeric end of chromosome 8 was identified as having a significant QTL for parasite resistance as measured by the number of Trichostrongylus spp. adults in the abomasum and small intestine at the end of the second parasite challenge. Two further QTL for associated immune function traits of total serum IgE and T. colubiformis specific serum IgG, at the end of the second parasite challenge, were identified on chromosome 23. CONCLUSION: Despite parasite resistance being a moderately heritable trait, this large study was able to identify only a single significant QTL associated with it. The QTL concerned adult parasite burdens at the end of the second parasite challenge when the lambs were approximately 6 months old. Our failure to discover more QTL suggests that most of the genes controlling this trait are of relatively small effect. The large number of suggestive QTL discovered (more than one per family per trait than would be expected by chance) also supports this conclusion.


Assuntos
Imunidade Inata/genética , Locos de Características Quantitativas/genética , Doenças dos Ovinos/genética , Carneiro Doméstico/genética , Animais , Mapeamento Cromossômico/métodos , Cruzamentos Genéticos , Feminino , Ligação Genética/genética , Genótipo , Masculino , Nematoides/crescimento & desenvolvimento , Infecções por Nematoides/genética , Infecções por Nematoides/parasitologia , Linhagem , Fenótipo , Doenças dos Ovinos/parasitologia , Carneiro Doméstico/parasitologia
4.
BMC Genomics ; 7: 42, 2006 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-16515715

RESUMO

BACKGROUND: Gastrointestinal nematodes constitute a major cause of morbidity and mortality in grazing ruminants. Individual animals or breeds, however, are known to differ in their resistance to infection. Gene expression profiling allows us to examine large numbers of transcripts simultaneously in order to identify those transcripts that contribute to an animal's susceptibility or resistance. RESULTS: With the goal of identifying genes with a differential pattern of expression between sheep genetically resistant and susceptible to gastrointestinal nematodes, a 20,000 spot ovine cDNA microarray was constructed. This array was used to interrogate the expression of 9,238 known genes in duodenum tissue of four resistant and four susceptible female lambs. Naïve animals were used in order to look at genes that were differentially expressed in the absence of infection with gastrointestinal nematodes. Forty one unique known genes were identified that were differentially expressed between the resistant and susceptible animals. Northern blotting of a selection of the genes confirmed differential expression. The differentially expressed genes had a variety of functions, although many genes relating to the stress response and response to stimulus were more highly expressed in the susceptible animals. CONCLUSION: We have constructed the first reported ovine microarray and used this array to examine gene expression in lambs genetically resistant and susceptible to gastrointestinal nematode infection. This study indicates that susceptible animals appear to be generating a hyper-sensitive immune response to non-nematode challenges. The gastrointestinal tract of susceptible animals is therefore under stress and compromised even in the absence of gastrointestinal nematodes. These factors may contribute to the genetic susceptibility of these animals.


Assuntos
Gastroenteropatias/veterinária , Predisposição Genética para Doença , Infecções por Nematoides/veterinária , Doenças dos Ovinos/genética , Doenças dos Ovinos/parasitologia , Animais , Sítios de Ligação , Duodeno/metabolismo , Feminino , GTP Fosfo-Hidrolases/genética , GTP Fosfo-Hidrolases/metabolismo , Gastroenteropatias/genética , Gastroenteropatias/parasitologia , Perfilação da Expressão Gênica , Imunidade Inata , Infecções por Nematoides/genética , Infecções por Nematoides/parasitologia , Regiões Promotoras Genéticas , Ovinos , Doenças dos Ovinos/metabolismo , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA