Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Cell Dev Biol ; 11: 1196472, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37377739

RESUMO

Introduction: Impairment of both the central and peripheral nervous system is a major cause of mortality and disability. It varies from an affection of the brain to various types of enteric dysganglionosis. Congenital enteric dysganglionosis is characterized by the local absence of intrinsic innervation due to deficits in either migration, proliferation or differentiation of neural stem cells. Despite surgery, children's quality of life is reduced. Neural stem cell transplantation seems a promising therapeutic approach, requiring huge amounts of cells and multiple approaches to fully colonize the diseased areas completely. A combination of successful expansion and storage of neural stem cells is needed until a sufficient amount of cells is generated. This must be combined with suitable cell transplantation strategies, that cover all the area affected. Cryopreservation provides the possibility to store cells for long time, unfortunately with side effects, i.e., upon vitality. Methods: In this study we investigate the impact of different freezing and thawing protocols (M1-M4) upon enteric neural stem cell survival, protein and gene expression, and cell function. Results: Freezing enteric nervous system derived neurospheres (ENSdN) following slow-freezing protocols (M1-3) resulted in higher survival rates than flash-freezing (M4). RNA expression profiles were least affected by freezing protocols M1/2, whereas the protein expression of ENSdN remained unchanged after treatment with protocol M1 only. Cells treated with the most promising freezing protocol (M1, slow freezing in fetal calf serum plus 10% DMSO) were subsequently investigated using single-cell calcium imaging. Freezing of ENSdN did not alter the increase in intracellular calcium in response to a specific set of stimuli. Single cells could be assigned to functional subgroups according to response patterns and a significant shift towards cells responding to nicotine was observed after freezing. Discussion: The results demonstrate that cryopreservation of ENSdN is possible with reduced viability, only slight changes in protein/gene expression patterns and without an impact on the neuronal function of different enteric nervous system cell subtypes, with the exception of a subtle upregulation of cells expressing nicotinergic acetylcholine receptors. In summary, cryopreservation presents a good method to store sufficient amounts of enteric neural stem cells without neuronal impairment, in order to enable subsequent transplantation of cells into compromised tissues.

3.
Pflugers Arch ; 474(9): 1003-1019, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35867188

RESUMO

We studied the efficacy of a near-infrared laser (1475 nm) to activate rat dorsal root ganglion (DRG) neurons with short punctate radiant heat pulses (55 µm diameter) and investigated temporal and spatial summation properties for the transduction process for noxious heat at a subcellular level. Strength-duration curves (10-80 ms range) indicated a minimum power of 30.2mW for the induction of laser-induced calcium transients and a chronaxia of 13.9 ms. However, threshold energy increased with increasing stimulus duration suggesting substantial radial cooling of the laser spot. Increasing stimulus duration demonstrated suprathreshold intensity coding of calcium transients with less than linear gains (Stevens exponents 0.29/35mW, 0.38/60mW, 0.46/70mW). The competitive TRPV1 antagonist capsazepine blocked responses to short near-threshold stimuli and significantly reduced responses to longer duration suprathreshold heat. Heating 1/3 of the soma of a neuron was sufficient to induce calcium transients significantly above baseline (p < 0.05), but maximum amplitude was only achieved by centering the laser over the entire neuron. Heat-induced calcium increase was highest in heated cell parts but rapidly reached unstimulated areas reminiscent of spreading depolarization and opening of voltage-gated calcium channels. Full intracellular equilibrium took about 3 s, consistent with a diffusion process. In summary, we investigated transduction mechanisms for noxious laser heat pulses in native sensory neurons at milliseconds temporal and subcellular spatial resolution and characterized strength duration properties, intensity coding, and spatial summation within single neurons. Thermal excitation of parts of a nociceptor spread via both membrane depolarization and intracellular calcium diffusion.


Assuntos
Temperatura Alta , Nociceptores , Animais , Cálcio/metabolismo , Células Cultivadas , Gânglios Espinais/metabolismo , Lasers , Nociceptores/metabolismo , Ratos , Ratos Sprague-Dawley
4.
Cancers (Basel) ; 14(12)2022 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-35740549

RESUMO

Soluble factors released from irradiated human mesenchymal stromal cells (MSC) may induce genetic instability in human CD34+ cells, potentially mediating hematologic disorders. Recently, we identified four key proteins in the secretome of X-ray-irradiated MSC, among them three endoplasmic reticulum proteins, the 78 kDa glucose-related protein (GRP78), calreticulin (CALR), and protein disulfide-isomerase A3 (PDIA3), as well as the glycolytic enzyme glucose-6-phosphate isomerase (GPI). Here, we demonstrate that exposition of CD34+ cells to recombinant GRP78, CALR, PDIA3 and GPI induces substantial genetic instability. Increased numbers of γH2AX foci (p < 0.0001), centrosome anomalies (p = 0.1000) and aberrant metaphases (p = 0.0022) were detected in CD34+ cells upon incubation with these factors. Specifically, γH2AX foci were found to be induced 4−5-fold in response to any individual of the four factors, and centrosome anomalies by 3−4 fold compared to control medium, which contained none of the recombinant proteins. Aberrant metaphases, not seen in the context of control medium, were detected to a similar extent than centrosome anomalies across the four factors. Notably, the strongest effects were observed when all four factors were collectively provided. In summary, our data suggest that specific components of the secretome from irradiated MSC act as mediators of genetic instability in CD34+ cells, thereby possibly contributing to the pathogenesis of radiation-induced hematologic disorders beyond direct radiation-evoked DNA strand breaks.

5.
Pain ; 163(11): e1115-e1128, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-35384915

RESUMO

ABSTRACT: The transient receptor potential ion channel TRPM3 is highly prevalent on nociceptive dorsal root ganglion (DRG) neurons, but its functions in neuronal plasticity of chronic pain remain obscure. In an animal model of nonspecific low back pain (LBP), latent spinal sensitization known as nociceptive priming is induced by nerve growth factor (NGF) injection. Here, we address the TRPM3-associated molecular basis of NGF-induced latent spinal sensitization at presynaptic level by studying TRPM3-mediated calcium transients in DRG neurons. By investigating TRPM3-expressing HEK cells, we further show the dynamic mitochondrial activity downstream of TRPM3 activation. NGF enhances TRPM3 function, attenuates TRPM3 tachyphylaxis, and slows intracellular calcium clearance; TRPM3 activation triggers more mitochondrial calcium loading than depolarization does, causing a steady-state mitochondrial calcium elevation and a delayed recovery of cytosolic calcium; mitochondrial calcium buffering accounts for approximately 40% of calcium influx subsequent to TRPM3 activation. TRPM3 activation provokes an outbreak of pulsatile superoxide production (mitoflash) that comes in the form of a surge in frequency being tunable. We suggest that mitoflash pulsations downstream of TRPM3 activation might be an early signaling event initiating pain sensitization. Tuning of mitoflash activity would be a novel bottom-up therapeutic strategy for chronic pain conditions such as LBP and beyond.


Assuntos
Dor Crônica , Dor Lombar , Canais de Cátion TRPM , Animais , Cálcio/metabolismo , Dor Crônica/metabolismo , Gânglios Espinais , Canais Iônicos/metabolismo , Fator de Crescimento Neural/metabolismo , Fator de Crescimento Neural/farmacologia , Superóxidos/metabolismo , Canais de Cátion TRPM/metabolismo
7.
Pain ; 162(1): 275-286, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32701656

RESUMO

We had previously shown that a "blunt blade" stimulator can mimic the noninjurious strain phase of incisional pain, but not its sustained duration. Here, we tested whether acute sensitization of the skin with topical capsaicin can add the sustained phase to this noninvasive surrogate model of intraoperative pain. Altogether, 110 healthy volunteers (55 male and 55 female; 26 ± 5 years) participated in several experiments using the "blunt blade" (0.25 × 4 mm) on normal skin (n = 36) and on skin pretreated by a high-concentration capsaicin patch (8%, Qutenza; n = 36). These data were compared with an experimental incision (n = 40) using quantitative and qualitative pain ratings by numerical rating scale and SES Pain Perception Scale descriptors. Capsaicin sensitization increased blade-induced pain magnitude and duration significantly (both P < 0.05), but it failed to fully match the sustained duration of incisional pain. In normal skin, the SES pattern of pain qualities elicited by the blade matched incision in pain magnitude and pattern of pain descriptors. In capsaicin-treated skin, the blade acquired a significant facilitation only of the perceived heat pain component (P < 0.001), but not of mechanical pain components. Thus, capsaicin morphed the descriptor pattern of the blade to become more capsaicin-like, which is probably explained best by peripheral sensitization of the TRPV1 receptor. Quantitative sensory testing in capsaicin-sensitized skin revealed hyperalgesia to heat and pressure stimuli, and loss of cold and cold pain sensitivity. These findings support our hypothesis that the blade models the early tissue-strain-related mechanical pain phase of surgical incisions.


Assuntos
Capsaicina , Dor , Capsaicina/efeitos adversos , Feminino , Temperatura Alta , Humanos , Hiperalgesia/induzido quimicamente , Masculino , Medição da Dor , Limiar da Dor
8.
ACS Chem Neurosci ; 11(24): 4387-4397, 2020 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-33284579

RESUMO

The hippocampus is an important region for the interaction between depression and pain. Studies show that the P2X4 receptor plays key role in neuropathic pain. This work investigated the potential implication of the P2X4 receptor in the hippocampus in comorbidity of chronic pain and depression. The rat model induced by chronic constriction injury (CCI) plus unpredictable chronic mild stress (UCMS) was used in this study. Our data showed that CCI plus UCMS treatment resulted in abnormal changes in pain and depressive-like behaviors in the rat, accompanied by the upregulated expression of P2X4, NLRP3 (NOD-like receptor protein 3) inflammasome, and interleukin-1ß and the activation of p38 MAPK in the hippocampus. The P2X4 antagonist 5-BDBD reversed these abnormal changes in the hippocampus, relieved hippocampal neuronal damage, and alleviated the abnormal pain and depressive-like behaviors in the CCI plus UCMS treated rats. These findings suggest that the P2X4 receptor in the hippocampus may mediate and significantly contribute to the pathological processes of comorbid pain and depression.


Assuntos
Dor Crônica , Receptores Purinérgicos P2X4 , Animais , Comorbidade , Depressão , Hipocampo , Ratos
9.
J Transl Med ; 18(1): 28, 2020 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-31952468

RESUMO

BACKGROUND: Pain is the vital sense preventing tissue damage by harmful noxious stimuli. The capsaicin receptor TRPV1 is activated by noxious temperatures, however, acute heat pain is only marginally affected in mice after TRPV1 knockout but completely eliminated in mice lacking TRPV1 positive fibers. Exploring contribution of candidate signal transduction mechanisms to heat pain in humans needs translational models. METHODS: We used focused, non-damaging, short near-infrared laser heat stimuli (wavelength 1470/1475 nm) to study the involvement of TRPV1-expressing nerve fibers in the encoding of heat pain intensity. Human psychophysics (both sexes) were compared to calcium transients in native rat DRG neurons and heterologously expressing HEK293 cells. RESULTS: Heating of dermal and epidermal nerve fibers in humans with laser stimuli of ≥ 2.5 mJ (≥ 25 ms, 100 mW) induced pain that increased linearly as a function of stimulus intensity in double logarithmic space across two orders of magnitude and was completely abolished by desensitization using topical capsaicin. In DRG neurons and TRPV1-expressing HEK cells, heat sensitivity was restricted to capsaicin sensitive cells. Strength duration curves (2-10 ms range) and thresholds (DRGs 0.56 mJ, HEK cells 0.52 mJ) were nearly identical. Tachyphylaxis upon repetitive stimulation occurred in HEK cells (54%), DRGs (59%), and humans (25%). CONCLUSION: TRPV1-expressing nociceptors encode transient non-damaging heat pain in humans, thermal gating of TRPV1 is similar in HEK cells and DRG neurons, and TRPV1 tachyphylaxis is an important modulator of heat pain sensitivity. These findings suggest that TRPV1 expressed in dermal and epidermal populations of nociceptors serves as first line defense against heat injury.


Assuntos
Capsaicina , Temperatura Alta , Canais de Cátion TRPV , Animais , Capsaicina/farmacologia , Feminino , Células HEK293 , Humanos , Masculino , Camundongos , Ratos
10.
Eur J Pain ; 23(10): 1863-1878, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31359547

RESUMO

BACKGROUND: Thermo-test devices are rarely used outside specialized pain centres because of high acquisition costs. Recently, a new, portable device ("Q-Sense") was introduced, which is less expensive but has reduced cooling capacity (20°C). We assessed the reliability/validity of the "Q-Sense" by comparing it with the Thermal Sensory Analyzer (TSA). METHODS: Using a phantom-skin model, the physical characteristics of both devices were compared. The clinical performance was assessed in a multicentre study by performing Quantitative Sensory Testing (QST) in 121 healthy volunteers and 83 diabetic patients (Eudra-Med-No. CIV-12-05-006501). RESULTS: Both device types showed ~40% slower temperature ramps for heating/cooling than nominal data. Cold/warm detection thresholds (CDT, WDT) and heat pain thresholds (HPT) of healthy subjects did not differ between device types. Cold pain thresholds (CPT) were biased for Q-Sense by a floor effect (p < .001). According to intraclass correlation coefficients (ICC), agreement between TSA and Q-Sense was good/excellent for CDT (ICC = 0.894) and WDT (ICC = 0.898), moderate for HPT (ICC = 0.525) and poor for CPT (ICC = 0.305). In diabetic patients, the sensitivity of Q-Sense to detect cold hypoesthesia was reduced in males >60 years. Moderate correlations between thermal detection thresholds and morphological data from skin biopsies (n = 51) were similar for both devices. CONCLUSIONS: Physical characteristics of both thermo-test devices are similarly limited by the poor temperature conduction of the skin. The Q-Sense is useful for thermal detection thresholds but of limited use for pain thresholds. For full clinical use, the lower cut-off temperature should be set to ≤18°C. SIGNIFICANCE: High purchase costs prevent a widespread use of thermo-test devices for diagnosing small fibre neuropathy. The air-cooled "Q-Sense" could be a lower cost alternative, but its technical/clinical performance needs to be assessed because of its restricted cut-off for cooling (20°C). This study provides critical information on the physical characteristics and the clinical validity/reliability of the Q-Sense compared to the "Thermal Sensory Analyzer" (TSA). We recommend lowering the cut-off value of the Q-Sense to ≤18°C for its full clinical use.


Assuntos
Temperatura Baixa , Neuropatias Diabéticas/diagnóstico , Equipamentos e Provisões , Temperatura Alta , Hipestesia/diagnóstico , Limiar da Dor , Sensação Térmica , Adulto , Fatores Etários , Idoso , Estudos de Casos e Controles , Diabetes Mellitus , Neuropatias Diabéticas/fisiopatologia , Feminino , Voluntários Saudáveis , Humanos , Hipestesia/fisiopatologia , Masculino , Pessoa de Meia-Idade , Dor , Medição da Dor , Reprodutibilidade dos Testes , Limiar Sensorial , Fatores Sexuais , Pele/inervação , Pele/patologia , Neuropatia de Pequenas Fibras , Adulto Jovem
11.
ACS Chem Neurosci ; 10(3): 1318-1325, 2019 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-30475578

RESUMO

Activation of satellite glial cells (SGCs) in the dorsal root ganglia (DRG) is involved in mechanical and thermal hyperalgesia. The upregulated P2Y12 receptor expressed in SGCs of the DRG participates in the nociceptive transmission of neuropathic pain. Guanfu base A (GFA) has been reported to exhibit antiarrhythmic and anti-inflammatory effects. In this study, we explored the effects of GFA on P2Y12 receptor-mediated mechanical and thermal hyperalgesia in chronic constriction injury (CCI) rats. Sprague-Dawley rats were randomly divided into sham operation group (Sham), CCI operation group (CCI), CCI rats treated with guanfu base A group (CCI + GFA) and control rats treated with GFA group (Ctrl + GFA). Mechanical withdrawal threshold and thermal withdrawal latency were measured. P2Y12 expression in L4-L6 dorsal root ganglion (DRG) was detected by quantitative real-time PCR and Western blot. After CCI treatment, mechanical and thermal hyperalgesia and the expression values of P2Y12 receptor mRNA and protein in DRG were increased. Dual-labeling immunofluorescence showed that the coexpression of P2Y12 receptor and glial fibrillary acidic protein (GFAP) in the DRG of CCI rats was increased compared to sham rats. GFA relieved mechanical and thermal hyperalgesia in the CCI rats, decreased the expression of P2Y12 mRNA and protein and phosphorylation of p38 MAPK in the DRG, and increased the ADP-downregulated cAMP concentrations in HEK293 cells transfected with P2Y12 plasmid. After CCI rats were treated with GFA, the coexpression of P2Y12 receptor and GFAP in the DRG was significantly decreased compared to the untreated CCI group. Thus, downregulating the P2Y12 receptor relieved mechanical and thermal hyperalgesia in the CCI rats.


Assuntos
Analgésicos/farmacologia , Gânglios Espinais/efeitos dos fármacos , Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Neuralgia/tratamento farmacológico , Receptores Purinérgicos P2/metabolismo , Animais , Constrição Patológica/tratamento farmacológico , Constrição Patológica/metabolismo , AMP Cíclico/metabolismo , Modelos Animais de Doenças , Gânglios Espinais/metabolismo , Proteína Glial Fibrilar Ácida/metabolismo , Células HEK293 , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Masculino , Neuralgia/metabolismo , RNA Mensageiro/metabolismo , Distribuição Aleatória , Ratos Sprague-Dawley , Receptores Purinérgicos P2Y12/metabolismo , Nervo Isquiático , Fator de Necrose Tumoral alfa/metabolismo
12.
J Med Chem ; 61(7): 3126-3137, 2018 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-29543451

RESUMO

We studied the chemical entities within N-octanoyl dopamine (NOD) responsible for the activation of transient-receptor-potential channels of the vanilloid-receptor subtype 1 (TRPV1) and inhibition of inflammation. The potency of NOD in activating TRPV1 was significantly higher compared with those of variants in which the ortho-dihydroxy groups were acetylated, one of the hydroxy groups was omitted ( N-octanoyl tyramine), or the ester functionality consisted of a bulky fatty acid ( N-pivaloyl dopamine). Shortening of the amide linker (ΔNOD) slightly increased its potency, which was further increased when the carbonyl and amide groups (ΔNODR) were interchanged. With the exception of ΔNOD, the presence of an intact catechol structure was obligatory for the inhibition of VCAM-1 and the induction of HO-1 expression. Because TRPV1 activation and the inhibition of inflammation by N-acyl dopamines require different structural entities, our findings provide a framework for the rational design of TRPV1 agonists with improved anti-inflammatory properties.


Assuntos
Anti-Inflamatórios não Esteroides/síntese química , Anti-Inflamatórios não Esteroides/farmacologia , Dopamina/análogos & derivados , Dopamina/farmacologia , Canais de Cátion TRPV/agonistas , Catecóis/química , Catecóis/farmacologia , Dopamina/síntese química , Indução Enzimática/efeitos dos fármacos , Ésteres/farmacologia , Ácidos Graxos/química , Células HEK293 , Heme Oxigenase-1/biossíntese , Humanos , Modelos Moleculares , Conformação Molecular , Relação Estrutura-Atividade , Molécula 1 de Adesão de Célula Vascular/antagonistas & inibidores
13.
J Cell Biochem ; 119(5): 3922-3935, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29219199

RESUMO

The purinergic receptor P2X3 (P2X3-R) plays important roles in molecular pathways of pain, and reduction of its activity or expression effectively reduces chronic inflammatory and neuropathic pain sensation. Inflammation, nerve injury, and cancer-induced pain can increase P2X3-R mRNA and/or protein levels in dorsal root ganglia (DRG). However, P2X3-R expression is unaltered or even reduced in other pain studies. The reasons for these discrepancies are unknown and might depend on the applied traumatic intervention or on intrinsic factors such as age, gender, genetic background, and/or epigenetics. In this study, we sought to get insights into the molecular mechanisms responsible for inflammatory hyperalgesia by determining P2X3-R expression in DRG neurons of juvenile male rats that received a Complete Freund's Adjuvant (CFA) bilateral paw injection. We demonstrate that all CFA-treated rats showed inflammatory hyperalgesia, however, only a fraction (14-20%) displayed increased P2X3-R mRNA levels, reproducible across both sides. Immunostaining assays did not reveal significant increases in the percentage of P2X3-positive neurons, indicating that increased P2X3-R at DRG somas is not critical for inducing inflammatory hyperalgesia in CFA-treated rats. Chromatin immunoprecipitation (ChIP) assays showed a correlated (R2 = 0.671) enrichment of the transcription factor Runx1 and the epigenetic active mark histone H3 acetylation (H3Ac) at the P2X3-R gene promoter in a fraction of the CFA-treated rats. These results suggest that animal-specific increases in P2X3-R mRNA levels are likely associated with the genetic/epigenetic context of the P2X3-R locus that controls P2X3-R gene transcription by recruiting Runx1 and epigenetic co-regulators that mediate histone acetylation.


Assuntos
Adjuvante de Freund/efeitos adversos , Gânglios Espinais/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Hiperalgesia/induzido quimicamente , Hiperalgesia/metabolismo , Receptores Purinérgicos P2X3/biossíntese , Transcrição Gênica/efeitos dos fármacos , Animais , Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Adjuvante de Freund/farmacologia , Gânglios Espinais/patologia , Hiperalgesia/patologia , Masculino , Ratos , Ratos Sprague-Dawley
14.
Elife ; 62017 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-28826482

RESUMO

Opioids, agonists of µ-opioid receptors (µORs), are the strongest pain killers clinically available. Their action includes a strong central component, which also causes important adverse effects. However, µORs are also found on the peripheral endings of nociceptors and their activation there produces meaningful analgesia. The cellular mechanisms downstream of peripheral µORs are not well understood. Here, we show in neurons of murine dorsal root ganglia that pro-nociceptive TRPM3 channels, present in the peripheral parts of nociceptors, are strongly inhibited by µOR activation, much more than other TRP channels in the same compartment, like TRPV1 and TRPA1. Inhibition of TRPM3 channels occurs via a short signaling cascade involving Gßγ proteins, which form a complex with TRPM3. Accordingly, activation of peripheral µORs in vivo strongly attenuates TRPM3-dependent pain. Our data establish TRPM3 inhibition as important consequence of peripheral µOR activation indicating that pharmacologically antagonizing TRPM3 may be a useful analgesic strategy.


Assuntos
Subunidades beta da Proteína de Ligação ao GTP/metabolismo , Subunidades beta da Proteína de Ligação ao GTP/farmacologia , Subunidades gama da Proteína de Ligação ao GTP/metabolismo , Subunidades gama da Proteína de Ligação ao GTP/farmacologia , Receptores Opioides mu/metabolismo , Canais de Cátion TRPM/efeitos dos fármacos , Analgésicos Opioides/agonistas , Animais , Escala de Avaliação Comportamental , Cálcio/metabolismo , Sinalização do Cálcio/fisiologia , Gânglios Espinais/metabolismo , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Nociceptores/fisiologia , Dor/metabolismo , Receptores Opioides/metabolismo , Canal de Cátion TRPA1/metabolismo , Canais de Cátion TRPV/metabolismo
15.
J Med Chem ; 59(21): 9855-9865, 2016 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-27731639

RESUMO

To mitigate pretransplantation injury in organs of potential donors, N-octanoyl dopamine (NOD) treatment might be considered as it does not affect hemodynamic parameters in braindead (BD) donors. To better assess optimal NOD concentrations for donor treatment, we report on the fast and facile radiofluorination of the NOD-derivative [18F]F-NOD [18F]5 for in vivo assessment of NOD's elimination kinetics by means of PET imaging. [18F]5 was synthesized in reproducibly high radiochemical yields and purity (>98%) as well as high specific activities (>20 GBq/µmol). Stability tests showed no decomposition of [18F]5 over a period of 120 min in rat plasma. In vitro, low cell association was found for [18F]5, indicating no active transport mechanism into cells. In vivo, [18F]5 exhibited a fast blood clearance and a predominant hepatobiliary elimination. As these data suggest that also NOD might be cleared fast, further pharmacokinetic evaluation is warranted.


Assuntos
Dopamina/análogos & derivados , Animais , Células Cultivadas , Dopamina/análise , Dopamina/química , Dopamina/farmacocinética , Radioisótopos de Flúor , Células HEK293 , Humanos , Estrutura Molecular , Tomografia por Emissão de Pósitrons , Ratos , Ratos Endogâmicos Lew , Distribuição Tecidual
16.
BMC Complement Altern Med ; 16: 97, 2016 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-26956043

RESUMO

BACKGROUND: The leaves of Oxyanthus pallidus Hiern (Rubiaceae) are extensively used in the west region of Cameroon as analgesic. These leaves are rich in cycloartanes, a subclass of triterpenes known to possess analgesic and anti-inflammatory properties. The present study aimed at evaluating the analgesic properties of three cycloartanes isolated from Oxyanthus pallidus leaves as well as their aglycones and acetylated derivatives. METHODS: Three cycloartanes OP3, OP5 and OP6 obtained by successive chromatography of the crude methanol extract of the leaves were hydrolysed to yield respective aglycone AOP1, AOP2, AOP3 and acetylated to HOP1, HOP2 and HOP3 respectively. Formalin-induced pain model was used to evaluate the acute anti-nociceptive properties of these cycloartanes (5 mg/kg, p.o) in mice and to determine the structure-activity relationship. Acute (24 h) and chronic (10 days) anti-hyperalgesic and anti-inflammatory activities of OP5 were evaluated at the doses of 2.5 and 5 mg/kg/day administered orally. OP6 was also evaluated in acute experiments. The antioxidant and hepato-protective activities of OP5 were evaluated at the end of the chronic treatment. RESULTS: The mixture and the individual isolated cycloartanes significantly inhibited both phases of formalin-induced pain with percentage inhibition ranging from 13 to 78%. Acid hydrolysis did not significantly affect their antinociceptive activities while acetylation significantly reduced the effects of these compounds during the second phase of pain. OP5 and OP6 induced acute anti-hyperalgesic activity in formalin-induced mechanical hyperalgesia but not an anti-inflammatory effect. Repeated administration of OP5 for 10 days did not induce any anti-hyperalgesic effect. The evaluation of in vivo antioxidant properties showed that OP5 significantly reduced malondialdehyde and increased superoxide dismutase levels in liver without significantly affecting other oxidative stress and hepatotoxic parameters. Chronic administration of OP5 did not cause gastric ulceration. CONCLUSION: Cycloartanes isolated from Oxyanthus pallidus possess analgesic effects but lack anti-inflammatory activities. This analgesic effect especially on inflammatory pain may be due to the presence of hydroxyl group in front of the plane. OP5 is devoid of ulcerogenic effect and possess antioxidant properties that might be of benefit to its analgesic properties.


Assuntos
Analgésicos/uso terapêutico , Hiperalgesia/tratamento farmacológico , Dor/tratamento farmacológico , Fitoterapia , Extratos Vegetais/uso terapêutico , Rubiaceae/química , Triterpenos/uso terapêutico , Analgésicos/isolamento & purificação , Analgésicos/farmacologia , Animais , Antioxidantes/isolamento & purificação , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Feminino , Formaldeído , Hiperalgesia/induzido quimicamente , Hiperalgesia/metabolismo , Inflamação/induzido quimicamente , Inflamação/patologia , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Malondialdeído/metabolismo , Camundongos , Estresse Oxidativo/efeitos dos fármacos , Dor/induzido quimicamente , Dor/metabolismo , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Ratos Wistar , Superóxido Dismutase/metabolismo , Triterpenos/isolamento & purificação , Triterpenos/farmacologia
17.
Diabetes ; 65(2): 331-45, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26798119

RESUMO

In the past decades three gaseous signaling molecules-so-called gasotransmitters-have been identified: nitric oxide (NO), carbon monoxide (CO), and hydrogen sulfide (H2S). These gasotransmitters are endogenously produced by different enzymes in various cell types and play an important role in physiology and disease. Despite their specific functions, all gasotransmitters share the capacity to reduce oxidative stress, induce angiogenesis, and promote vasorelaxation. In patients with diabetes, a lower bioavailability of the different gasotransmitters is observed when compared with healthy individuals. As yet, it is unknown whether this reduction precedes or results from diabetes. The increased risk for vascular disease in patients with diabetes, in combination with the extensive clinical, financial, and societal burden, calls for action to either prevent or improve the treatment of vascular complications. In this Perspective, we present a concise overview of the current data on the bioavailability of gasotransmitters in diabetes and their potential role in the development and progression of diabetes-associated microvascular (retinopathy, neuropathy, and nephropathy) and macrovascular (cerebrovascular, coronary artery, and peripheral arterial diseases) complications. Gasotransmitters appear to have both inhibitory and stimulatory effects in the course of vascular disease development. This Perspective concludes with a discussion on gasotransmitter-based interventions as a therapeutic option.


Assuntos
Diabetes Mellitus/fisiopatologia , Angiopatias Diabéticas/fisiopatologia , Gasotransmissores/fisiologia , Disponibilidade Biológica , Monóxido de Carbono/fisiologia , Angiopatias Diabéticas/etiologia , Humanos , Sulfeto de Hidrogênio/metabolismo , Neovascularização Patológica/etiologia , Óxido Nítrico/fisiologia , Estresse Oxidativo , Vasodilatação
18.
Nephrol Dial Transplant ; 31(4): 564-73, 2016 04.
Artigo em Inglês | MEDLINE | ID: mdl-26454224

RESUMO

BACKGROUND: N-octanoyl dopamine (NOD) treatment improves renal function when applied to brain dead donors and in the setting of warm ischaemia-induced acute kidney injury (AKI). Because it also activates transient receptor potential vanilloid type 1 (TRPV1) channels, we first assessed if NOD conveys its renoprotective properties in warm ischaemia-induced AKI via TRPV1 and secondly, if renal transplant recipients also benefit from NOD treatment. METHODS: We induced warm renal ischaemia in Lewis, wild-type (WT) and TRPV1(-/-) Sprague-Dawley (sd) rats by clamping the left renal artery for 45 min. Transplantations were performed in allogeneic and syngeneic donor-recipient combinations (Fisher to Lewis and Lewis to Lewis) with a cold ischaemia time of 20 h. Treatment was instituted directly after restoration of organ perfusion. Renal function, histology and perfusion were assessed by serum creatinine, microscopy and magnetic resonance imaging (MRI) using arterial spin labelling (ASL). RESULTS: NOD treatment significantly improved renal function in Lewis rats after warm ischaemia-induced AKI. It was, however, not effective after prolonged cold ischaemia. The renoprotective properties of NOD were only observed in Lewis or WT, but not in TRPV1(-/-) sd rats. Renal inflammation was significantly abrogated by NOD. MRI-ASL showed a significantly lower cortical perfusion in ischaemic when compared with non-ischaemic kidneys. No overall differences were observed in renal perfusion between NOD- and NaCl-treated rats. CONCLUSIONS: NOD treatment reduces renal injury in warm ischaemia, but is not effective in renal transplant in our experimental animal models. The salutary effect of NOD appears to be TPRV1-dependent, not involving large changes in renal perfusion.


Assuntos
Injúria Renal Aguda/tratamento farmacológico , Dopamina/análogos & derivados , Transplante de Rim/efeitos adversos , Rim/fisiopatologia , Animais , Dopamina/uso terapêutico , Rim/efeitos dos fármacos , Rim/cirurgia , Masculino , Ratos , Ratos Endogâmicos Lew , Ratos Sprague-Dawley , Doadores de Tecidos , Transplante Homólogo , Isquemia Quente
19.
Stem Cell Res ; 15(1): 30-41, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26001168

RESUMO

Human induced pluripotent stem cells (hiPSCs) are a suitable tool to study basic molecular and cellular mechanisms of neurodevelopment. The directed differentiation of hiPSCs via the generation of a self-renewable neuronal precursor cell line allows the standardization of defined differentiation protocols. Here, we have investigated whether preconditioning with retinoic acid during early neural induction impacts on morphological and functional characteristics of the neuronal culture after terminal differentiation. For this purpose we have analyzed neuronal and glial cell markers, neuronal outgrowth, soma size, depolarization-induced distal shifts of the axon initial segment as well as glutamate-evoked calcium influx. Retinoic acid preconditioning led to a higher yield of neurons vs. glia cells and longer axons than unconditioned controls. In contrast, glutamatergic activation and depolarization induced structural plasticity were unchanged. Our results show that the treatment of neuroectodermal cells with retinoic acid during early development, i.e. during the neurulation phase, increases the yield of neuronal phenotypes, but does not impact on the functionality of terminally differentiated neuronal cells.


Assuntos
Forma Celular/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/citologia , Neurônios/citologia , Tretinoína/farmacologia , Axônios/efeitos dos fármacos , Axônios/metabolismo , Cálcio/metabolismo , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Perfilação da Expressão Gênica , Ácido Glutâmico/farmacologia , Humanos , Imageamento Tridimensional , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Neurais/citologia , Células-Tronco Neurais/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Fenótipo , Regulação para Cima/efeitos dos fármacos
20.
Brain ; 138(Pt 9): 2505-20, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25943423

RESUMO

Long-term potentiation in the spinal dorsal horn requires peptidergic C-fibre activation in animals. Perceptual correlates of long-term potentiation following high-frequency electrical stimulation in humans include increased sensitivity to electrical stimuli at the high frequency stimulation site (homotopic pain-long-term potentiation) and increased sensitivity to pinprick surrounding the high frequency stimulation site (heterotopic pain-long-term potentiation, equivalent to secondary hyperalgaesia). To characterize the peripheral fibre populations involved in induction of pain-long-term potentiation, we performed two selective nerve block experiments in 30 healthy male volunteers. Functional blockade of TRPV1-positive nociceptors by high-concentration capsaicin (verified by loss of heat pain) significantly reduced pain ratings to high frequency stimulation by 47% (P < 0.001), homotopic pain-long-term potentiation by 71% (P < 0.01), heterotopic pain-long-term potentiation by 92% (P < 0.001) and the area of secondary hyperalgesia by 76% (P < 0.001). The selective blockade of A-fibre conduction by nerve compression (verified by loss of first pain to pinprick) significantly reduced pain ratings to high frequency stimulation by 37% (P < 0.01), but not homotopic pain-long-term potentiation (-5%). It had a marginal effect on heterotopic pain-long-term potentiation (-35%, P = 0.059), while the area of secondary hyperalgesia remained unchanged (-2%, P = 0.88). In conclusion, all nociceptor subclasses contribute to high frequency stimulation-induced pain (with a relative contribution of C > Aδ fibres, and an equal contribution of TRPV1-positive and TRPV1-negative fibres). TRPV1-positive C-fibres are the main inducers of both homotopic and heterotopic pain-long-term potentiation. TRPV1-positive A-fibres contribute substantially to the induction of heterotopic pain-long-term potentiation. TRPV1-negative C-fibres induce a component of homotopic self-facilitation but not heterotopic pain-long-term potentiation. TRPV1-negative A-fibres are the main afferents mediating pinprick pain and hyperalgesia, however, they do not appear to contribute to the induction of pain-long-term potentiation. These findings show that distinct peripheral fibre classes mediate induction of long-term potentiation-like pain amplification, its spatial spread to adjacent skin (i.e. secondary hyperalgesia), and the resulting enhanced sensitivity to pinprick in humans. Nociceptive afferents that induce pain amplification can be readily dissociated from those mediating pain. These findings add substantially to our understanding of the mechanisms of pain amplification, that form the basis for understanding the mechanisms of hyperalgesia encountered in patients.See Sandkühler (doi:10.1093/brain/awv193) for a scientific commentary on this article.


Assuntos
Capsaicina/farmacologia , Potenciação de Longa Duração/efeitos dos fármacos , Fibras Nervosas/efeitos dos fármacos , Nociceptores/efeitos dos fármacos , Dor/patologia , Fármacos do Sistema Sensorial/farmacologia , Adulto , Biofísica , Estimulação Elétrica , Voluntários Saudáveis , Humanos , Hiperalgesia/fisiopatologia , Masculino , Condução Nervosa/efeitos dos fármacos , Nociceptores/fisiologia , Dor/induzido quimicamente , Limiar da Dor/efeitos dos fármacos , Estimulação Física , Pele/inervação , Canais de Cátion TRPV/metabolismo , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...