Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Small ; 20(9): e2305034, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37867212

RESUMO

Light-responsive microactuators composed of vertically aligned carbon nanotube (CNT) forests mixed with poly(N-isopropylacrylamide) (PNIPAM) hydrogel composites are studied. The benefit of this composite is that CNTs act as a black absorber to efficiently capture radiative heating and trigger PNIPAM contraction. In addition, CNT forests can be patterned accurately using lithography to span structures ranging from a few micrometers to several millimeters in size, and these CNT-PNIPAM composites can achieve response times as fast as 15 ms. The kinetics of these microactuators are investigated through detailed analysis of high-speed videos. These are compared to a theoretical model for the deswelling dynamics, which combines thermal convection and polymer diffusion, and shows that polymer diffusion is the rate-limiting factor in this system. Applications of such CNT/hydrogel actuators as microswimmers are discussed, with light-actuating micro-jellyfish designs exemplified, and >1500 cycles demonstrated.

2.
Adv Mater ; 31(35): e1900331, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31268196

RESUMO

Steam-cracker tar (SCT) is a by-product of ethylene production that is in massive quantities globally (>150 × 106 tons per year). With few useful applications, the production of unwanted SCT leads to the need for its costly disposal or burning at the boiler plant. The discovery of new uses for SCT would therefore bring both economic and environmental benefits, although, to date, efforts toward employing SCT in diverse applications have been limited, and progress is further hampered by a lack of understanding of the material itself. Although complex and highly heterogeneous in nature, the molecular composition of SCT has the potential to serve as a diverse and tunable feedstock for wide-ranging applications. Here, a simple solution-processing method for SCT that allows its conductivity and optical properties to be controlled over orders of magnitude is reported. Here, by way of example, the focus is on the production of transparent conductive thin films, which exhibit a wide range of transparencies (23-93%) and sheet resistances (2.5 Ω â–¡-1 to 1.2 kΩ â–¡-1 ) that are tuned by a combination of solution concentration and thermal annealing. As transparent Joule heaters, even without optimization, these SCT devices show competitive performance compared to established technologies such as those based on reduced graphene oxide, and surpass the temperature stability limit of other materials. Furthermore, it is demonstrated that laser annealing can be used to process the SCT films and directly pattern transparent heaters on an arbitrary substrate. These results highlight the potential of SCT as a feedstock material for electronic applications and suggest that broader classes of either naturally occurring carbon or produced carbonaceous by-products could prove useful in a range of applications.

3.
Small ; 15(11): e1805473, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30716205

RESUMO

CO2 photoreduction to C1 /C1+ energized molecules is a key reaction of solar fuel technologies. Building heterojunctions can enhance photocatalysts performance, by facilitating charge transfer between two heterojunction phases. The material parameters that control this charge transfer remain unclear. Here, it is hypothesized that governing factors for CO2 photoreduction in gas phase are: i) a large porosity to accumulate CO2 molecules close to catalytic sites and ii) a high number of "points of contact" between the heterojunction components to enhance charge transfer. The former requirement can be met by using porous materials; the latter requirement by controlling the morphology of the heterojunction components. Hence, composites of titanium oxide or titanate and metal-organic framework (MOF), a highly porous material, are built. TiO2 or titanate nanofibers are synthesized and MOF particles are grown on the fibers. All composites produce CO under UV-vis light, using H2 as reducing agent. They are more active than their component materials, e.g., ≈9 times more active than titanate. The controlled composites morphology is confirmed and transient absorption spectroscopy highlights charge transfer between the composite components. It is demonstrated that electrons transfer from TiO2 into the MOF, and holes from the MOF into TiO2 , as the MOF induces band bending in TiO2 .

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA