Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Neurobiol Dis ; 195: 106481, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38527708

RESUMO

Microglia contribute to the outcomes of various pathological conditions including Parkinson's disease (PD). Microglia are heterogenous, with a variety of states recently identified in aging and neurodegenerative disease models. Here, we delved into the diversity of microglia in a preclinical PD model featuring the G2019S mutation in LRRK2, a known pathological mutation associated with PD. Specifically, we investigated the 'dark microglia' (DM) and the 'disease-associated microglia' (DAM) which present a selective enrichment of CLEC7A expression. In the dorsal striatum - a region affected by PD pathology - extensive ultrastructural features of cellular stress as well as reduced direct cellular contacts, were observed for microglia from old LRRK2 G2019S mice versus controls. In addition, DM were more prevalent while CLEC7A-positive microglia had extensive phagocytic ultrastructural characteristics in the LRRK2 G2019S mice. Furthermore, our findings revealed a higher proportion of DM in LRRK2 G2019S mice, and an increased number of CLEC7A-positive cells with age, exacerbated by the pathological mutation. These CLEC7A-positive cells exhibited a selective enrichment of ameboid morphology and tended to cluster in the affected animals. In summary, we provide novel insights into the occurrence and features of recently defined microglial states, CLEC7A-positive cells and DM, in the context of LRRK2 G2019S PD pathology.


Assuntos
Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina , Microglia , Doença de Parkinson , Animais , Masculino , Camundongos , Modelos Animais de Doenças , Lectinas Tipo C/genética , Lectinas Tipo C/metabolismo , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microglia/patologia , Microglia/metabolismo , Microglia/ultraestrutura , Mutação , Doença de Parkinson/genética , Doença de Parkinson/patologia , Doença de Parkinson/metabolismo
2.
NPJ Parkinsons Dis ; 7(1): 85, 2021 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-34548498

RESUMO

14-3-3s represent a family of highly conserved 30 kDa acidic proteins. 14-3-3s recognize and bind specific phospho-sequences on client partners and operate as molecular hubs to regulate their activity, localization, folding, degradation, and protein-protein interactions. 14-3-3s are also associated with the pathogenesis of several diseases, among which Parkinson's disease (PD). 14-3-3s are found within Lewy bodies (LBs) in PD patients, and their neuroprotective effects have been demonstrated in several animal models of PD. Notably, 14-3-3s interact with some of the major proteins known to be involved in the pathogenesis of PD. Here we first provide a detailed overview of the molecular composition and structural features of 14-3-3s, laying significant emphasis on their peculiar target-binding mechanisms. We then briefly describe the implication of 14-3-3s in the central nervous system and focus on their interaction with LRRK2, α-Synuclein, and Parkin, three of the major players in PD onset and progression. We finally discuss how different types of small molecules may interfere with 14-3-3s interactome, thus representing a valid strategy in the future of drug discovery.

3.
Sci Rep ; 7: 40699, 2017 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-28084443

RESUMO

Parkinson's disease is a neurodegenerative disorder characterized by the death of dopaminergic neurons and by accumulation of alpha-synuclein (aS) aggregates in the surviving neurons. The dopamine catabolite 3,4-dihydroxyphenylacetaldehyde (DOPAL) is a highly reactive and toxic molecule that leads to aS oligomerization by covalent modifications to lysine residues. Here we show that DOPAL-induced aS oligomer formation in neurons is associated with damage of synaptic vesicles, and with alterations in the synaptic vesicles pools. To investigate the molecular mechanism that leads to synaptic impairment, we first aimed to characterize the biochemical and biophysical properties of the aS-DOPAL oligomers; heterogeneous ensembles of macromolecules able to permeabilise cholesterol-containing lipid membranes. aS-DOPAL oligomers can induce dopamine leak in an in vitro model of synaptic vesicles and in cellular models. The dopamine released, after conversion to DOPAL in the cytoplasm, could trigger a noxious cycle that further fuels the formation of aS-DOPAL oligomers, inducing neurodegeneration.


Assuntos
Ácido 3,4-Di-Hidroxifenilacético/análogos & derivados , Multimerização Proteica/efeitos dos fármacos , Vesículas Sinápticas/efeitos dos fármacos , Vesículas Sinápticas/metabolismo , alfa-Sinucleína/metabolismo , Ácido 3,4-Di-Hidroxifenilacético/farmacologia , Animais , Transporte Biológico/efeitos dos fármacos , Linhagem Celular , Membrana Celular/metabolismo , Humanos , Espectroscopia de Ressonância Magnética , Camundongos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/ultraestrutura , Permeabilidade , Agregados Proteicos , Agregação Patológica de Proteínas , Ligação Proteica , Espectrometria de Massas em Tandem , alfa-Sinucleína/química
4.
Sci Rep ; 6: 33897, 2016 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-27658356

RESUMO

Leucine-rich repeat kinase 2 (LRRK2) kinase activity is increased in several pathogenic mutations, including the most common mutation, G2019S, and is known to play a role in Parkinson's disease (PD) pathobiology. This has stimulated the development of potent, selective LRRK2 kinase inhibitors as one of the most prevailing disease-modifying therapeutic PD strategies. Although several lines of evidence support beneficial effects of LRRK2 kinase inhibitors, many questions need to be answered before clinical applications can be envisaged. Using six different LRRK2 kinase inhibitors, we show that LRRK2 kinase inhibition induces LRRK2 dephosphorylation and can reduce LRRK2 protein levels of overexpressed wild type and G2019S, but not A2016T or K1906M, LRRK2 as well as endogenous LRRK2 in mouse brain, lung and kidney. The inhibitor-induced reduction in LRRK2 levels could be reversed by proteasomal inhibition, but not by lysosomal inhibition, while mRNA levels remained unaffected. In addition, using LRRK2 S910A and S935A phosphorylation mutants, we show that dephosphorylation of these sites is not required for LRRK2 degradation. Increasing our insight in the molecular and cellular consequences of LRRK2 kinase inhibition will be crucial in the further development of LRRK2-based PD therapies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA