Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
RSC Chem Biol ; 5(4): 273-292, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38576725

RESUMO

Spectroscopic studies increasingly employ Raman tags exhibiting a signal in the cell - silent region of the Raman spectrum (1800-2800 cm-1), where bands arising from biological molecules are inherently absent. Raman tags bearing functional groups which contain a triple bond, such as alkyne and nitrile or a carbon-deuterium bond, have a distinct vibrational frequency in this region. Due to the lack of spectral background and cell-associated bands in the specific area, the implementation of those tags can help overcome the inherently poor signal-to-noise ratio and presence of overlapping Raman bands in measurements of biological samples. The cell - silent Raman tags allow for bioorthogonal imaging of biomolecules with improved chemical contrast and they have found application in analyte detection and monitoring, biomarker profiling and live cell imaging. This review focuses on the potential of the cell - silent Raman region, reporting on the tags employed for biomedical applications using variants of Raman spectroscopy.

2.
Adv Mater ; : e2314337, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38406997

RESUMO

The unique properties of conjugated polymers (CPs) in various optoelectronic applications are mainly attributed to their different self-assembly processes and superstructures. Various methods are utilized to tune and control CP structure and properties with less attention paid to the use of chirality. CPs with main chain chirality are rare and their microscopic and macroscopic properties are still unknown. In this work, the first experimental results are provided along these lines by synthesizing a series of racemic and enantiopure CPs containing statistical and alternating carbo[6]helicene and indacenodithiophene moieties and evaluating their microscopic (optical, energy levels) and macroscopic properties (hole mobilities, photovoltaic performance). It is demonstrated that a small statistical insertion of either the racemic or enantiopure helicene into the polymer backbone finely tunes the microscopic and macroscopic properties as a function of the statistical content. The microscopic properties of the enantiopure versus the racemic polymers with the same helicene loading remain similar. On the contrary, the macroscopic properties, and more interestingly those between the two enantiomeric forms, are altered as a function of the statistical content. Once incorporated into a solar cell device, these chiral CPs display better performance in their enantiopure versus racemic forms.

3.
Sci Adv ; 9(23): eadh2694, 2023 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-37285428

RESUMO

One of the key challenges facing organic photodiodes (OPDs) is increasing the detection into the infrared region. Organic semiconductor polymers provide a platform for tuning the bandgap and optoelectronic response to go beyond the traditional 1000-nanometer benchmark. In this work, we present a near-infrared (NIR) polymer with absorption up to 1500 nanometers. The polymer-based OPD delivers a high specific detectivity D* of 1.03 × 1010 Jones (-2 volts) at 1200 nanometers and a dark current Jd of just 2.3 × 10-6 ampere per square centimeter at -2 volts. We demonstrate a strong improvement of all OPD metrics in the NIR region compared to previously reported NIR OPD due to the enhanced crystallinity and optimized energy alignment, which leads to reduced charge recombination. The high D* value in the 1100-to-1300-nanometer region is particularly promising for biosensing applications. We demonstrate the OPD as a pulse oximeter under NIR illumination, delivering heart rate and blood oxygen saturation readings in real time without signal amplification.

4.
Spectrochim Acta A Mol Biomol Spectrosc ; 291: 122375, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-36680833

RESUMO

In this study the chemical characterisation of 24 commercial spray-paints in different colours as used in contemporary public murals, street art, and graffiti is presented. The analyses were focused on the identification of the binding media, pigments, and additives. In addition, four spray-paint samples were analysed in the form of bi-layered paint films to explore the possibility of determining the composition of multi-layered samples. The aim of the study was to provide a useful diagnostic tool for the conservation of spray-paints and the removal of overpaintings from both commissioned murals and any other form of cultural heritage. To achieve this goal, a multi-analytical approach was developed using Attenuated Total Reflectance-Fourier Transform Infrared Spectroscopy (ATR-FTIR) for the identification of the main binder, pigments, and fillers/extenders, while Raman spectroscopy and Scanning Electron Microscopy/Energy Dispersive X-ray Spectroscopy (SEM/EDS) were used as complementary tools for the determination of organic and inorganic pigments, and fillers. Five kinds of binders were detected in this work: (1) acrylic resins combined with nitrocellulose, (2) acrylic resins modified with styrene and combined with nitrocellulose, (3) alkyd resins modified with styrene and combined with nitrocellulose, (4) combined acrylic and alkyd resins modified with styrene and blended with nitrocellulose, and (5) combined polystyrene and acrylic resins. Also, a wide variety of organic pigments and inorganic components were detected.

5.
Polymers (Basel) ; 14(23)2022 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-36501686

RESUMO

In this study the preparation of hybrid materials based on reduced graphene oxide (rGO) and conjugated copolymers is reported. By tuning the number and arrangement of thiophenes in the main chain (indacenothiophene or indacenothienothiophene) and the nature of the polymer acceptor (difluoro benzothiadiazole or diketopyrrolopyrrole) semiconducting copolymers were synthesized through Stille aromatic coupling and characterized to determine their molecular characteristics. The graphene oxide was synthesized using the Staudenmaier method and was further modified to reduced graphene oxide prior to structural characterization. Various mixtures with different rGO quantities and conjugated copolymers were prepared to determine the optoelectronic, thermal and morphological properties. An increase in the maximum absorbance ranging from 3 to 6 nm for all hybrid materials irrespective of the rGO concentration, when compared to the pristine conjugated copolymers, was estimated through the UV-Vis spectroscopy indicating a differentiation on the optical properties. Through voltammetric experiments the oxidation and reduction potentials were determined and the calculated HOMO and LUMO levels revealed a decrease on the electrochemical energy gap for low rGO concentrations. The study indicates the potential of the hybrid materials consisting of graphene oxide and high band gap conjugated copolymers for applications related to organic solar cells.

6.
Chem Soc Rev ; 51(11): 4465-4483, 2022 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-35583184

RESUMO

Owing to their unique porosity and large surface area, porous organic polymers (POPs) have shown their presence in numerous novel applications. The tunability and functionality of both the pores and backbone of the material enable its suitability in photovoltaic devices. The porosity induced host-guest configurations as well as periodic donor-acceptor structures benefit the charge separation and charge transfer in photophysical processes. The role of POPS in other critical device components, such as hole transporting layers and electrodes, has also been demonstrated. Herein, this review will primarily focus on the recent progress made in applying POPs for solar cell device performance enhancement, covering organic solar cells, perovskite solar cells, and dye-sensitized solar cells. Based on the efforts in recent years in unraveling POP's photophysical process and its relevance with device performances, an in-depth analysis will be provided to address the gradual shift of attention from an entirely POP-based active layer to other device functional components. Combining the insights from device physics, material synthesis, and microfabrication, we aim to unfold the fundamental limitations and challenges of POPs and shed light on future research directions.


Assuntos
Polímeros , Polímeros/química , Porosidade
7.
Small ; 18(15): e2200580, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35246948

RESUMO

Recent efforts in the field of organic photodetectors (OPD) have been focused on extending broadband detection into the near-infrared (NIR) region. Here, two blends of an ultralow bandgap push-pull polymer TQ-T combined with state-of-the-art non-fullerene acceptors, IEICO-4F and Y6, are compared to obtain OPDs for sensing in the NIR beyond 1100 nm, which is the cut off for benchmark Si photodiodes. It is observed that the TQ-T:IEICO-4F device has a superior IR responsivity (0.03 AW-1 at 1200 nm and -2 V bias) and can detect infrared light up to 1800 nm, while the TQ-T:Y6 blend shows a lower responsivity of 0.01 AW-1 . Device physics analyses are tied with spectroscopic and morphological studies to link the superior performance of TQ-T:IEICO-4F OPD to its faster charge separation as well as more favorable donor-acceptor domains mixing. In the polymer blend with Y6, the formation of large agglomerates that exceed the exciton diffusion length, which leads to high charge recombination, is observed. An application of these devices as biometric sensors for real-time heart rate monitoring via photoplethysmography, utilizing infrared light, is demonstrated.


Assuntos
Energia Solar , Raios Infravermelhos , Monitorização Fisiológica , Polímeros/química
8.
Nat Commun ; 12(1): 1772, 2021 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-33741966

RESUMO

A critical bottleneck for improving the performance of organic solar cells (OSC) is minimising non-radiative losses in the interfacial charge-transfer (CT) state via the formation of hybrid energetic states. This requires small energetic offsets often detrimental for high external quantum efficiency (EQE). Here, we obtain OSC with both non-radiative voltage losses (0.24 V) and photocurrent losses (EQE > 80%) simultaneously minimised. The interfacial CT states separate into free carriers with ≈40-ps time constant. We combine device and spectroscopic data to model the thermodynamics of charge separation and extraction, revealing that the relatively high performance of the devices arises from an optimal adjustment of the CT state energy, which determines how the available overall driving force is efficiently used to maximize both exciton splitting and charge separation. The model proposed is universal for donor:acceptor (D:A) with low driving forces and predicts which D:A will benefit from a morphology optimization for highly efficient OSC.

9.
ACS Appl Mater Interfaces ; 11(40): 36905-36916, 2019 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-31523951

RESUMO

Herein, we report a detailed study on the optoelectronic properties, photovoltaic performance, structural conformation, morphology variation, charge carrier mobility, and recombination dynamics in bulk heterojunction solar cells comprising a series of donor-acceptor conjugated polymers as electron donors based on benzodithiophene (BDT) and 5,8-bis(5-bromothiophen-2-yl)-6,7-difluoro-2,3-bis(3-(octyloxy)phenyl)quinoxaline as a function of the BDT's thienyl substitution (alkyl (WF3), alkylthio (WF3S), and fluoro (WF3F)). The synergistic positive effects of the fluorine substituents on the minimization of the bimolecular recombination losses, the reduction of the series resistances (RS), the increment of the shunt resistances (RSh), the suppression of the trap-assisted recombination losses, the balanced charge transport, the finer nanoscale morphology, and the deeper highest occupied molecular orbital (EHOMO) are manifested versus the alkyl and alkylthio substituents. According to these findings, the WF3F:[6,6]-phenyl-C71-butyric acid methyl ester (PC71BM)-based organic photovoltaic device is a rare example that features a high power conversion efficiency (PCE) of 17.34% under 500 lx indoor light-emitting diode light source with a high open-circuit voltage (VOC) of 0.69 V, due to the suppression of the voltage losses, and a PCE of 9.44% at 1 sun (100 mW/cm2) conditions, simultaneously.

10.
J Chem Phys ; 149(12): 124902, 2018 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-30278667

RESUMO

A series of nine (9) donor-acceptor-donor (DAD) π-conjugated small molecules were synthesized via palladium catalyzed Stille aromatic cross-coupling reactions by the combination of six (6) heterocycle building blocks (thiophene, furan, thiazole, 2,1,3-benzothiadiazole, 2,1,3-pyridinothiadiazole, thienothiadiazole) acting as electron donating (thiazole, furan, thiophene) and electron deficient (benzothiadiazole, pyridinethiadiazole, thienothiadiazole) units. These model compounds enable determining the correspondence between the theoretical and experimental optical and electrochemical properties for the first time, via Density Functional Theory (DFT), time-dependent DFT, UV-Vis spectroscopy, and cyclic voltammetry, accordingly. The obtained theoretical models can be utilized for the design and synthesis of new DAD structures with precise optical bandgaps, absorption maxima, and energy levels suitable for different optoelectronic applications.

11.
ACS Appl Mater Interfaces ; 10(34): 28803-28811, 2018 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-30074766

RESUMO

In this work, we present a novel small molecule based on dithienylthienothiadiazole units (named SM1) acting as an efficient component in ternary blend organic solar cells to modify the hole extraction at the interface. Our findings show that the SM1 suppresses the surface recombination and enhances the open-circuit voltage ( Voc). By introducing SM1 in a host system composed of poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl- C61-butyric acid methyl ester (PCBM), we obtained Voc values of up to 0.75 V and fill factors larger than 70% for the ternary blends. As a consequence, the power conversion efficiency is improved by about 30% compared to P3HT:PCBM binary devices. Interestingly, external quantum efficiency and absorption spectra in the near-infrared region do not show any contribution of SM1 in dried films. Instead, the addition of the small molecule improves the Voc by reducing the surface recombination losses. To shed light on the recombination processes, we carried out Fourier-transform photocurrent spectroscopy and impedance spectroscopy measurements. This work shows that the ternary concept can also have functionalities other than photosensitization and can even act as a morphology-directing agent or an interface modifier.

12.
ACS Appl Mater Interfaces ; 10(15): 12937-12946, 2018 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-29589432

RESUMO

A conjugated donor-acceptor polymer, poly[4,4,9,9-tetrakis(4-hexylphenyl)-4,9-dihydro- s-indaceno[1,2- b:5,6- b']dithiophene-2,7-diyl- alt-5-(2-ethylhexyl)-4 H-thieno[3,4- c]pyrrole-4,6(5 H)-dione-1,3-diyl] (PIDT-TPD), is blended with the fullerene derivative [6,6]phenyl-C61-butyric acid methyl ester (PC61BM) for the fabrication of thin and solution-processed organic photodetectors (OPDs). Systematic screening of the concentration ratio of the blend and the molecular weight of the polymer is performed to optimize the active layer morphology and the OPD performance. The device comprising a medium molecular weight polymer (27.0 kg/mol) in a PIDT-TPD:PC61BM 1:1 ratio exhibits an external quantum efficiency of 52% at 610 nm, a dark current density of 1 nA/cm2, a detectivity of 1.44 × 1013 Jones, and a maximum 3 dB cutoff frequency of 100 kHz at -5 V bias. These results are remarkable among the state-of-the-art red photodetectors based on conjugated polymers. As such, this work presents a functional organic active material for high-speed OPDs with a linear photoresponse at different light intensities.

13.
ACS Appl Mater Interfaces ; 10(12): 10236-10245, 2018 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-29508996

RESUMO

We report on the photovoltaic parameters, photophysical properties, optoelectronic properties, self-assembly, and morphology variations in a series of high-performance donor-acceptor (D-A) π-conjugated polymers based on indacenodithiophene and quinoxaline moieties as a function of the number-average molecular weight ([Formula: see text]), the nature of aryl substituents, and the enlargement of the polymer backbone. One of the most important outcome is that from the three optimization approaches followed to tune the chemical structure toward enhanced photovoltaic performance in bulk heterojunction solar cell devices with the fullerene derivative [6,6]-phenyl-C71-butyric acid methyl ester as the electron acceptor, the choice of the aryl substituent is the most efficient rational design strategy. Incorporation of thienyl rings as substituents versus phenyl rings accelerates the electron-hole extraction process to the respective electrode, despite the slightly lower recombination lifetime and, thus, improves the electrical performance of the device. Single-junction solar cells based on ThIDT-TQxT feature a maximum power-conversion efficiency of 7.26%. This study provides significant insights toward understanding of the structure-properties-performance relationship for D-A π-conjugated polymers in solid state, which provide helpful inputs for the design of next-generation polymeric semiconductors for organic solar cells with enhanced performance.

14.
Macromol Rapid Commun ; 39(5)2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29251388

RESUMO

The efficient synthesis of a new solution-processable n-type conjugated polymer network (PNT1) is reported through palladium-catalyzed Stille cross-coupling reaction conditions following the A3 + B2 synthetic approach. A benzo[1,2-b:3,4-b':5,6-b″]trithiophene derivative is used as the A3 knot and an alkyl functionalized naphthalenediimide is utilized as the B2 linker. The thermal, optical, and electrochemical properties are examined in detail, showing high thermal stability, absorbance in the visible part of the solar spectrum, and reversible reduction characteristics similar to those of the fullerene derivative [6,6]-phenyl-C71 -butyric acid methyl ester (PC71 BM). PNT1 is employed as the electron acceptor in solution-processed bulk heterojunction organic solar cells, demonstrating the potential of this new type of materials for optoelectronic applications.


Assuntos
Fontes de Energia Elétrica , Luz , Polímeros/química , Soluções/química , Imidas/química , Microscopia de Força Atômica , Modelos Químicos , Estrutura Molecular , Naftalenos/química , Polímeros/síntese química , Energia Solar , Espectrofotometria , Temperatura , Tiofenos/química
15.
Sci Rep ; 7(1): 1611, 2017 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-28487525

RESUMO

We take advantage of a recent breakthrough in the synthesis of α,ß-unfunctionalised 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY) moieties, which we symmetrically conjugate with oligothienyls in an unexpectedly stable form, and produce a "metal-free" A-D-A (acceptor-donor-acceptor) oligomer emitting in the near-infrared (NIR) thanks to delocalisation of the BODIPY low-lying lowest unoccupied molecular orbital (LUMO) over the oligothienyl moieties, as confirmed by density functional theory (DFT). We are able to retain a PL efficiency of 20% in the solid state (vs. 30% in dilute solutions) by incorporating such a dye in a wider gap polyfluorene matrix and demonstrate organic light-emitting diodes (OLEDs) emitting at 720 nm. We achieve external quantum efficiencies (EQEs) up to 1.1%, the highest value achieved so far by a "metal-free" NIR-OLED not intentionally benefitting from triplet-triplet annihilation. Our work demonstrates for the first time the promise of A-D-A type dyes for NIR OLEDs applications thereby paving the way for further optimisation.

16.
Macromol Rapid Commun ; 38(7)2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28195679

RESUMO

Low-bandgap near-infrared polymers are usually synthesized using the common donor-acceptor (D-A) approach. However, recently polymer chemists are introducing more complex chemical concepts for better fine tuning of their optoelectronic properties. Usually these studies are limited to one or two polymer examples in each case study so far, though. In this study, the dependence of optoelectronic and macroscopic (device performance) properties in a series of six new D-A1 -D-A2 low bandgap semiconducting polymers is reported for the first time. Correlation between the chemical structure of single-component polymer films and their optoelectronic properties has been achieved in terms of absorption maxima, optical bandgap, ionization potential, and electron affinity. Preliminary organic photovoltaic results based on blends of the D-A1 -D-A2 polymers as the electron donor mixed with the fullerene derivative [6,6]-phenyl-C71 -butyric acid methyl ester demonstrate power conversion efficiencies close to 4% with short-circuit current densities (J sc ) of around 11 mA cm-2 , high fill factors up to 0.70, and high open-circuit voltages (V oc s) of 0.70 V. All the devices are fabricated in an inverted architecture with the photoactive layer processed in air with doctor blade technique, showing the compatibility with roll-to-roll large-scale manufacturing processes.


Assuntos
Fontes de Energia Elétrica , Polímeros/química , Energia Solar , Estrutura Molecular , Polímeros/síntese química
17.
Appl Spectrosc ; 60(11): 1285-92, 2006 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17132446

RESUMO

Syndiotactic polypropylene nanocomposites based on layered silicates in various proportions were subjected to prolonged (246 h) ultraviolet (UV)-c irradiation. Fourier transform infrared (FT-IR) spectroscopy was used in order to investigate the molecular alterations of the polymeric matrix during the UV exposure relative to the concentration of nanoclay. It was found that a significant increase of the helical conformation upon the irradiation took place as a result of scissions of the polymeric chains. In addition, a simultaneous increase in the crystallinity was verified by X-ray diffraction (XRD) measurements. Furthermore, a variety of photooxidation products were detected, among them carboxylic acids, ketones, gamma-lactones, and esters. We report in this paper the impact of the clay on the degradation mechanism of syndiotactic polypropylene mostly by the production of additional free radicals. Therefore, the relative intensities of the produced photooxidative species are affected drastically as a function of the concentration of the layered silicate present. Finally, an interaction of the carbonyl groups formed in the polymer upon irradiation with the polar groups of the layered silicates was confirmed both from infrared and UV-visible spectroscopic studies.

18.
J Phys Chem B ; 110(10): 4657-62, 2006 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-16526698

RESUMO

Spectroscopic and morphological studies on a series of rod-coil block copolymers containing terfluorene segments as the rigid blocks and polystyrene as the flexible parts demonstrate an increase in the photoluminescence intensity and the exciton lifetime as well as formation of isolated spheres as thin films upon thermal annealing in air (200 degrees C for 30 min). Moreover, no appearance of the low energy emission band centered at 520 nm was found after the same thermal treatment which permits these copolymers to emit pure blue light.

19.
Appl Spectrosc ; 59(9): 1148-54, 2005 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16197638

RESUMO

High-density polyethylene (HDPE)-clay nano-composites have been prepared using the melt intercalation technique. Organically modified montmorillonite at various loadings (0.5--7%) was used as a nano-additive. Fourier transform infrared spectroscopy (FT-IR) was utilized for the first time to monitor the stress-induced crystal-to-crystal transformations of the polyethylene matrix with respect to the clay loading as well as to the degree of mechanical strain. In addition, polarized infrared measurements revealed information on both the orientation and the stress-induced distortion of the crystals. It was concluded that the crystal-to-crystal transformations are hindered by the presence of the clay, which also prevented the crystals from orienting even at low clay loadings (1%). Finally, X-ray diffraction (XRD) and differential scanning calorimetry (DSC) measurements confirmed the presence of the stress-induced crystalline structures in agreement with the infrared measurements.


Assuntos
Estrutura Secundária de Proteína , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Água/química , Ligação de Hidrogênio , Proteínas/química , Temperatura
20.
J Phys Chem B ; 109(18): 8755-60, 2005 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-16852038

RESUMO

Spectroscopic studies on a series of rod-coil block copolymers with terfluorene as the rigid segment demonstrate that the main cause of color instability in fluorene oligomers and polymers is aggregate and/or excimer formation and not the presence alone of keto defects (fluorenone formation) along the molecular chain. Keto defects, when present, contribute to the appearance of the undesirable "green" emission band but are not the leading cause of color instability. Thus, the synthesis of materials where aggregation and/or interchain, intersegment interactions are inhibited is the key approach for the production of stable polymeric light-emitting devices (PLED's). The potential of this method is verified by the synthesis of photooxidative stable fluorene/styrene diblock copolymer blue emitters.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...