Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Photonics ; 8(11): 3201-3208, 2021 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-34820474

RESUMO

Photon recycling, the iterative process of re-absorption and re-emission of photons in an absorbing medium, can play an important role in the power-conversion efficiency of photovoltaic cells. To date, several studies have proposed that this process may occur in bulk or thin films of inorganic lead-halide perovskites, but conclusive proof of the occurrence and magnitude of this effect is missing. Here, we provide clear evidence and quantitative estimation of photon recycling in CsPbBr3 nanocrystal suspensions by combining measurements of steady-state and time-resolved photoluminescence (PL) and PL quantum yield with simulations of photon diffusion through the suspension. The steady-state PL shows clear spectral modifications including red shifts and quantum yield decrease, while the time-resolved measurements show prolonged PL decay and rise times. These effects grow as the nanocrystal concentration and distance traveled through the suspension increase. Monte Carlo simulations of photons diffusing through the medium and exhibiting absorption and re-emission account quantitatively for the observed trends and show that up to five re-emission cycles are involved. We thus identify 4 quantifiable measures, PL red shift, PL QY, PL decay time, and PL rise time that together all point toward repeated, energy-directed radiative transfer between nanocrystals. These results highlight the importance of photon recycling for both optical properties and photovoltaic applications of inorganic perovskite nanocrystals.

2.
ACS Nano ; 14(10): 13806-13815, 2020 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-32924433

RESUMO

Semiconductor nanocrystals, or quantum dots (QDs), simultaneously benefit from inexpensive low-temperature solution processing and exciting photophysics, making them the ideal candidates for next-generation solar cells and photodetectors. While the working principles of these devices rely on light absorption, QDs intrinsically belong to the Rayleigh regime and display optical behavior limited to electric dipole resonances, resulting in low absorption efficiencies. Increasing the absorption efficiency of QDs, together with their electronic and excitonic coupling to enhance charge carrier mobility, is therefore of critical importance to enable practical applications. Here, we demonstrate a general and scalable approach to increase both light absorption and excitonic coupling of QDs by fabricating hierarchical metamaterials. We assemble QDs into crystalline supraparticles using an emulsion template and demonstrate that these colloidal supercrystals (SCs) exhibit extended resonant optical behavior resulting in an enhancement in absorption efficiency in the visible range of more than 2 orders of magnitude with respect to the case of dispersed QDs. This successful light trapping strategy is complemented by the enhanced excitonic coupling observed in ligand-exchanged SCs, experimentally demonstrated through ultrafast transient absorption spectroscopy and leading to the formation of a free biexciton system on sub-picosecond time scales. These results introduce a colloidal metamaterial designed by self-assembly from the bottom up, simultaneously featuring a combination of nanoscale and mesoscale properties leading to simultaneous photonic and excitonic coupling, therefore presenting the nanocrystal analogue of supramolecular structures.

3.
ACS Omega ; 5(34): 21506-21512, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32905445

RESUMO

Multiple exciton generation (MEG) takes place in competition to other hot carrier cooling processes. While the determination of carrier cooling rates is well established, direct information on MEG dynamics has been lacking. Here, we present a methodology to obtain the MEG rate directly in the initial ultrafast transient absorption dynamics. This method is most effective to systems with slow carrier cooling rates. Perovskite quantum dots exhibit this property and are used to illustrate this approach. They show a delayed carrier concentration buildup following an excitation pulse above the MEG threshold energy, which is accompanied by a faster carrier relaxation, providing a direct evidence of the MEG process. Numerical modeling within a simple framework of two competing cooling mechanisms allows us to extract the MEG rate and carrier energy cooling rates for this material. The presented methodology could provide new insights in carrier generation physics and valuable information for MEG investigations.

4.
Nano Lett ; 20(8): 5997-6004, 2020 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-32701303

RESUMO

Inorganic perovskites display an enticing foreground for their wide range of optoelectronic applications. Recently, supercrystals (SCs) of inorganic perovskite nanocrystals (NCs) have been reported to possess highly ordered structure as well as novel collective optical properties, opening new opportunities for efficient films. Here, we report the large-scale assembly control of spherical, cubic, and hexagonal SCs of inorganic perovskite NCs through templating by oil-in-oil emulsions. We show that an interplay between the roundness of the cubic NCs and the tension of the confining droplet surface sets the superstructure morphology, and we exploit this interplay to design dense hyperlattices of SCs. The SC films show strongly enhanced stability for at least two months without obvious structural degradation and minor optical changes. Our results on the controlled large-scale assembly of perovskite NC superstructures provide new prospects for the bottom-up production of optoelectronic devices based on the microfluidic production of mesoscopic building blocks.

5.
Nat Commun ; 10(1): 5488, 2019 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-31792222

RESUMO

Carrier multiplication (CM) is a process in which high-energy free carriers relax by generation of additional electron-hole pairs rather than by heat dissipation. CM is promising disruptive improvements in photovoltaic energy conversion and light detection technologies. Current state-of-the-art nanomaterials including quantum dots and carbon nanotubes have demonstrated CM, but are not satisfactory owing to high-energy-loss and inherent difficulties with carrier extraction. Here, we report CM in van der Waals (vdW) MoTe2 and WSe2 films, and find characteristics, commencing close to the energy conservation limit and reaching up to 99% CM conversion efficiency with the standard model. This is demonstrated by ultrafast optical spectroscopy with independent approaches, photo-induced absorption, photo-induced bleach, and carrier population dynamics. Combined with a high lateral conductivity and an optimal bandgap below 1 eV, these superior CM characteristics identify vdW materials as an attractive candidate material for highly efficient and mechanically flexible solar cells in the future.

6.
Light Sci Appl ; 7: 100, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30534369

RESUMO

Optical activation of neurons requires genetic manipulation or the use of chemical photoactivators with undesirable side effects. As a solution to these disadvantages, here, we demonstrate optically evoked neuronal activity in mouse cortical neurons in acute slices and in vivo by nonlinear excitation of gold nanoparticles. In addition, we use this approach to stimulate individual epitheliomuscular cells and evoke body contractions in Hydra vulgaris. To achieve this, we use a low-power pulsed near-infrared excitation at the double-wavelength of the plasmon resonance of gold nanoparticles, which enables optical sectioning and allows for high spatial precision and large penetration depth. The effect is explained by second-harmonic Mie scattering, demonstrating light absorption by a second-order nonlinear process, which enables photothermal stimulation of the cells. Our approach also minimizes photodamage, demonstrating a major advancement towards precise and harmless photoactivation for neuroscience and human therapeutics.

7.
Nat Commun ; 9(1): 4199, 2018 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-30305623

RESUMO

The all-inorganic perovskite nanocrystals are currently in the research spotlight owing to their physical stability and superior optical properties-these features make them interesting for optoelectronic and photovoltaic applications. Here, we report on the observation of highly efficient carrier multiplication in colloidal CsPbI3 nanocrystals prepared by a hot-injection method. The carrier multiplication process counteracts thermalization of hot carriers and as such provides the potential to increase the conversion efficiency of solar cells. We demonstrate that carrier multiplication commences at the threshold excitation energy near the energy conservation limit of twice the band gap, and has step-like characteristics with an extremely high quantum yield of up to 98%. Using ultrahigh temporal resolution, we show that carrier multiplication induces a longer build-up of the free carrier concentration, thus providing important insights into the physical mechanism responsible for this phenomenon. The evidence is obtained using three independent experimental approaches, and is conclusive.

8.
ACS Appl Mater Interfaces ; 10(6): 5984-5991, 2018 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-29355301

RESUMO

All-inorganic cesium lead halide perovskite nanocrystals are extensively studied because of their outstanding optoelectronic properties. Being of a cubic shape and typically featuring a narrow size distribution, CsPbX3 (X = Cl, Br, and I) nanocrystals are the ideal starting material for the development of homogeneous thin films as required for photovoltaic and optoelectronic applications. Recent experiments reveal spontaneous merging of drop-casted CsPbBr3 nanocrystals, which is promoted by humidity and mild-temperature treatments and arrested by electron beam irradiation. Here, we make use of atom-resolved annular dark-field imaging microscopy and valence electron energy loss spectroscopy in a state-of-the-art low-voltage monochromatic scanning transmission electron microscope to investigate the aggregation between individual nanocrystals at the atomic level. We show that the merging process preserves the elemental composition and electronic structure of CsPbBr3 and takes place between nanocrystals of different sizes and orientations. In particular, we reveal seamless stitching for aligned nanocrystals, similar to that reported in the past for graphene flakes. Because the crystallographic alignment occurs naturally in drop-casted layers of CsPbX3 nanocrystals, our findings constitute the essential first step toward the development of large-area nanosheets with band gap energies predesigned by the nanocrystal choice-the gateway to large-scale photovoltaic applications of inorganic perovskites.

9.
J Phys Chem C Nanomater Interfaces ; 122(7): 4116, 2018 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-31329758

RESUMO

[This corrects the article DOI: 10.1021/acs.jpcc.7b05752.].

10.
Light Sci Appl ; 7: 17133, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30839625

RESUMO

Increasing temperature is known to quench the excitonic emission of bulk silicon, which is due to thermally induced dissociation of excitons. Here, we demonstrate that the effect of temperature on the excitonic emission is reversed for quantum-confined silicon nanocrystals. Using laser-induced heating of silicon nanocrystals embedded in SiO2, we achieved a more than threefold (>300%) increase in the radiative (photon) emission rate. We theoretically modeled the observed enhancement in terms of the thermally stimulated effect, taking into account the massive phonon production under intense illumination. These results elucidate one more important advantage of silicon nanostructures, illustrating that their optical properties can be influenced by temperature. They also provide an important insight into the mechanisms of energy conversion and dissipation in ensembles of silicon nanocrystals in solid matrices. In practice, the radiative rate enhancement under strong continuous wave optical pumping is relevant for the possible application of silicon nanocrystals for spectral conversion layers in concentrator photovoltaics.

11.
Sci Rep ; 7(1): 14463, 2017 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-29089509

RESUMO

Semiconductor quantum dots are widely investigated due to their size dependent energy structure. In particular, colloidal quantum dots represent a promising nanomaterial for optoelectronic devices, such as photodetectors and solar cells, but also luminescent markers for biotechnology, among other applications. Ideal materials for these applications should feature efficient radiative recombination and absorption transitions, altogether with spectral tunability over a wide range. Group IV semiconductor quantum dots can fulfill these requirements and serve as an alternative to the commonly used direct bandgap materials containing toxic and/or rare elements. Here, we present optical properties of butyl-terminated Si and Ge quantum dots and compare them to those of graphene quantum dots, finding them remarkably similar. We investigate their time-resolved photoluminescence emission as well as the photoluminescence excitation and linear absorption spectra. We contemplate that their emission characteristics indicate a (semi-) resonant activation of the emitting channel; the photoluminescence excitation shows characteristics similar to those of a molecule. The optical density is consistent with band-to-band absorption processes originating from core-related states. Hence, these observations strongly indicate a different microscopic origin for absorption and radiative recombination in the three investigated quantum dot systems.

12.
ACS Photonics ; 4(9): 2187-2196, 2017 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-29057294

RESUMO

Nanoscale dielectric resonators and quantum-confined semiconductors have enabled unprecedented control over light absorption and excited charges, respectively. In this work, we embed luminescent silicon nanocrystals (Si-NCs) into a 2D array of SiO2 nanocylinders and experimentally prove a powerful concept: the resulting metamaterial preserves the radiative properties of the Si-NCs and inherits the spectrally selective absorption properties of the nanocylinders. This hierarchical approach provides increased photoluminescence (PL) intensity obtained without utilizing any lossy plasmonic components. We perform rigorous calculations and predict that a freestanding metamaterial enables tunable absorption peaks up to 50% in the visible spectrum, in correspondence with the nanocylinder Mie resonances and of the grating condition in the array. We experimentally detect extinction spectral peaks in the metamaterial, which drive enhanced absorption in the Si-NCs. Consequently, the metamaterial features increased PL intensity, obtained without affecting the PL lifetime, angular pattern, and extraction efficiency. Remarkably, our best-performing metamaterial shows +30% PL intensity achieved with a lower amount of Si-NCs, compared to an equivalent planar film without nanocylinders, resulting in a 3-fold average PL enhancement per Si-NC. The principle demonstrated here is general, and the Si-NCs can be replaced with other semiconductor quantum dots, rare-earth ions, or organic molecules. Similarly, the dielectric medium can be adjusted on purpose. This spectral selectivity of absorption paves the way for an effective light down-conversion scheme to increase the efficiency of solar cells. We envision the use of this hierarchical design for other efficient photovoltaic, photocatalytic, and artificial photosynthetic devices with spectrally selective absorption and enhanced efficiency.

14.
J Phys Chem C Nanomater Interfaces ; 121(35): 19490-19496, 2017 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-28919935

RESUMO

Nanocrystals of all-inorganic cesium lead halide perovskites (CsPbX3, X = Cl, Br, I) feature high absorption and efficient narrow-band emission which renders them promising for future generation of photovoltaic and optoelectronic devices. Colloidal ensembles of these nanocrystals can be conveniently prepared by chemical synthesis. However, in the case of CsPbBr3, its synthesis can also yield nanocrystals of Cs4PbBr6 and the properties of the two are easily confused. Here, we investigate in detail the optical characteristics of simultaneously synthesized green-emitting CsPbBr3 and insulating Cs4PbBr6 nanocrystals. We demonstrate that, in this case, the two materials inevitably hybridize, forming nanoparticles with a spherical shape. The actual amount of these Cs4PbBr6 nanocrystals and nanohybrids increases for synthesis at lower temperatures, i.e., the condition typically used for the development of perovskite CsPbBr3 nanocrystals with smaller sizes. We use state-of-the-art electron energy loss spectroscopy to characterize nanoparticles at the single object level. This method allows distinguishing between optical characteristics of a pure Cs4PbBr6 and CsPbBr3 nanocrystal and their nanohybrid. In this way, we resolve some of the recent misconceptions concerning possible visible absorption and emission of Cs4PbBr6. Our method provides detailed structural characterization, and combined with modeling, we conclusively identify the nanospheres as CsPbBr3/Cs4PbBr6 hybrids. We show that the two phases are independent of each other's presence and merge symbiotically. Herein, the optical characteristics of the parent materials are preserved, allowing for an increased absorption in the UV due to Cs4PbBr6, accompanied by the distinctive efficient green emission resulting from CsPbBr3.

15.
Nanoscale ; 9(2): 631-636, 2017 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-27942687

RESUMO

Cesium lead halide perovskite nanocrystals are being lately explored for optoelectronic applications due to their emission tunability, high photoluminescence quantum yields, and narrow emission bands. Nevertheless, their incompatibility with polar solvents and composition homogenization driven by a fast anion-exchange are still important drawbacks to overcome. Herein we report on a successful encapsulation of colloidal perovskite nanocrystals within solid-lipid structures mainly consisting of stearic acid. The product is water-stable for a period longer than 2 months and anion-exchange is fully arrested when mixing nanocrystals of different halide compositions. This strategy boosts the potential applications of all-inorganic perovskite nanocrystals for ink-printing.

16.
Nano Lett ; 16(11): 7198-7202, 2016 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-27733042

RESUMO

We investigate the variation of the bandgap energy of single quantum dots of CsPbBr3 inorganic halide perovskite as a function of size and shape and upon embedding within an ensemble. For that purpose, we make use of valence-loss electron spectroscopy with Z-contrast annular dark-field (ADF) imaging in a state-of-the-art low-voltage monochromatic scanning transmission electron microscope. In the experiment, energy absorption is directly mapped onto individual quantum dots, whose dimensions and location are simultaneously measured to the highest precision. In that way, we establish an intimate relation between quantum dot size and even shape and its bandgap energy on a single object level. We explicitly follow the bandgap increase in smaller quantum dots due to quantum confinement and demonstrate that it is predominantly governed by the smallest of the three edges of the cuboidal perovskite dot. We also show the presence of an effective coupling between proximal dots in an ensemble, leading to band structure modification. These unique insights are directly relevant to the development of custom-designed quantum structures and solids which will be realized by purposeful assemblage of individually characterized and selected quantum dots, serving as building blocks.

17.
Sci Rep ; 6: 20538, 2016 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-26852922

RESUMO

Carrier multiplication in nanostructures promises great improvements in a number of widely used technologies, among others photodetectors and solar cells. The decade since its discovery was ridden with fierce discussions about its true existence, magnitude, and mechanism. Here, we introduce a novel, purely spectroscopic approach for investigation of carrier multiplication in nanocrystals. Applying this method to silicon nanocrystals in an oxide matrix, we obtain an unambiguous spectral signature of the carrier multiplication process and reveal details of its size-dependent characteristics-energy threshold and efficiency. The proposed method is generally applicable and suitable for both solid state and colloidal samples, as well as for a great variety of different materials.

18.
Sci Rep ; 6: 19566, 2016 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-26786062

RESUMO

One of the important obstacles on the way to application of Si nanocrystals for development of practical devices is their typically low emissivity. In this study we explore the limits of external quantum yield of photoluminescence of solid-state dispersions of Si nanocrystals in SiO2. By making use of a low-temperature hydrogen passivation treatment we demonstrate a maximum emission quantum efficiency of approximately 35%. This is the highest value ever reported for this type of material. By cross-correlating PL lifetime with EQE values, we obtain a comprehensive understanding of the efficiency limiting processes induced by Pb-defects. We establish that the observed record efficiency corresponds to an interface density of Pb-centers of 1.3 × 10(12) cm(12), which is 2 orders of magnitude higher than for the best Si/SiO2 interface. This result implies that Si nanocrystals with up to 100% emission efficiency are feasible.

19.
Sci Rep ; 5: 17289, 2015 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-26603483

RESUMO

Si nanocrystals (NCs) are often prepared by thermal annealing of multiple stacks of alternating sub-stoichiometric SiOx and SiO2 nanolayers. It is frequently claimed that in these structures, the NC diameter can be predefined by the thickness of the SiOx layer, while the NC concentration is independently controlled by the stoichiometry parameter x. However, several detailed structural investigations report that the NC size confinement to within the thickness of the SiOx layer is not strictly obeyed. In this study we address these contradicting findings: based on cross-correlation between structural and optical characterization of NCs grown in a series of purposefully prepared samples of different stoichiometry and layer thickness, we develop a comprehensive understanding of NC formation by Si precipitation in multinanolayer structures. We argue that the narrow NC size distribution generally observed in these materials appears due to reduction of the Si diffusion range, imposed by the SiO2 spacer layer. Therefore, both the SiOx layer thickness and composition as well as the actual thickness of the SiO2 spacer play an essential role in the NC formation.

20.
J Phys Chem Lett ; 6(13): 2518-23, 2015 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-26266728

RESUMO

Clarification of the energy-transfer (ET) mechanism is of vital importance for constructing efficient upconversion nanoplatforms for biological/biomedical applications. Yet, most strategies of optimizing these nanoplatforms were casually based on a dynamic ET assumption. In this work, we have modeled quantitatively the shell-thickness-dependent interplay between dynamic and static ET in nanosystems and validated the model in a typical biofunctional upconversion nanoplatform composed of NaYF4:Er, Yb/NaYF4 upconversion nanoparticles (UCNPs), and energy-acceptor photosensitizing molecule Rose Bengal (RB). It was determined that with a proper thickness shell, the energy transferred via dynamic ET as well as static ET in this case could be significantly improved by ∼4 and ∼9 fold, respectively, compared with the total energy transferred from bare core UCNPs. Our results shall form the bedrock in designing highly efficient ET-based biofunctional nanoplatforms.


Assuntos
Transferência de Energia/fisiologia , Nanopartículas Metálicas/química , Simulação de Dinâmica Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...