Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Regen Med ; 19(4): 171-187, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37818696

RESUMO

Background: Efficacious repair of peripheral nerve injury is an unmet clinical need. The implantation of biomaterials containing neurotrophic drugs at the injury site could promote nerve regeneration and improve outcomes for patients. Materials & methods: Random and aligned electrospun poly-ε-caprolactone scaffolds containing encapsulated tacrolimus were fabricated, and the gene expression profile of Schwann cells (SCs) cultured on the surface was elucidated. On aligned fibers, the morphology of SCs and primary rat neurons was investigated. Results: Both scaffold types exhibited sustained release of drug, and the gene expression of SCs was modulated by both nanofibrous topography and the presence of tacrolimus. Aligned fibers promoted the alignment of SCs and orientated outgrowth from neurons. Conclusion: Electrospun PCL scaffolds with tacrolimus hold promise for the repair of peripheral nerve injury.


This article reports the production and testing of fibrous materials loaded with tacrolimus, a drug known to improve nerve regeneration, for the surgical repair of peripheral nerve injury. Materials were created with either a randomly orientated structure or an aligned structure that mimics the anatomy of native nerve, and both displayed long-term release of the loaded drug. Schwann cells, which are a critical cell type in nerve regeneration, were grown on the materials and their behaviour was positively influenced by the fibrous surfaces and/or the presence of tacrolimus. Neurons grown on the aligned materials demonstrated directional outgrowth, which may be also beneficial for increasing the rate of regeneration. These materials have the potential to improve outcomes of nerve repair for patients.


Assuntos
Nanofibras , Traumatismos dos Nervos Periféricos , Animais , Ratos , Materiais Biocompatíveis , Regeneração Nervosa , Poliésteres , Células de Schwann , Tacrolimo/metabolismo , Engenharia Tecidual , Alicerces Teciduais
2.
Cells ; 12(1)2022 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-36611836

RESUMO

Damage to peripheral nerves can cause debilitating consequences for patients such as lifelong pain and disability. At present, no drug treatments are routinely given in the clinic following a peripheral nerve injury (PNI) to improve regeneration and remyelination of damaged nerves. Appropriately targeted therapeutic agents have the potential to be used at different stages following nerve damage, e.g., to maintain Schwann cell viability, induce and sustain a repair phenotype to support axonal growth, or promote remyelination. The development of therapies to promote nerve regeneration is currently of high interest to researchers, however, translation to the clinic of drug therapies for PNI is still lacking. Studying the effect of PPARγ agonists for treatment of peripheral nerve injures has demonstrated significant benefits. Ibuprofen, a non-steroidal anti-inflammatory drug (NSAID), has reproducibly demonstrated benefits in vitro and in vivo, suggested to be due to its agonist action on PPARγ. Other NSAIDs have demonstrated differing levels of PPARγ activation based upon their affinity. Therefore, it was of interest to determine whether affinity for PPARγ of selected drugs corresponded to an increase in regeneration. A 3D co-culture in vitro model identified some correlation between these two properties. However, when the drug treatments were screened in vivo, in a crush injury model in a rat sciatic nerve, the same correlation was not apparent. Further differences were observed between capacity to increase axon number and improvement in functional recovery. Despite there not being a clear correlation between affinity and size of effect on regeneration, all selected PPARγ agonists improved regeneration, providing a panel of compounds that could be explored for use in the treatment of PNI.


Assuntos
PPAR gama , Traumatismos dos Nervos Periféricos , Ratos , Animais , Regeneração Nervosa/fisiologia , Células de Schwann , Traumatismos dos Nervos Periféricos/tratamento farmacológico , Nervo Isquiático , Anti-Inflamatórios não Esteroides/farmacologia , Anti-Inflamatórios não Esteroides/uso terapêutico
3.
Neurochem Int ; 143: 104953, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33388359

RESUMO

The efficacious repair of severe peripheral nerve injuries is currently an unmet clinical need, and biomaterial constructs offer a promising approach to help promote nerve regeneration. Current research focuses on the development of more sophisticated constructs with complex architecture and the addition of regenerative agents to encourage timely reinnervation and promote functional recovery. This review surveyed the present landscape of nerve repair construct literature with a focus on six selected materials that are frequently encountered in this application: the natural proteins collagen, chitosan, and silk, and the synthetic polymers poly-ε-caprolactone (PCL), poly-lactic-co-glycolic acid (PLGA) and poly-glycolic acid (PGA). This review also investigated the use of cell therapy in nerve repair constructs, and in all instances concentrated on publications reporting constructs developed and tested in vivo in the last five years (2015-2020). Across the selected literature, the popularity of natural proteins and synthetic polymers appears to be broadly equivalent, with a similar number of studies reporting successful outcomes in vivo. Both material types are also utilised as vehicles for cell therapy, which has much potential to improve the results of nerve bridging for treating longer gaps.


Assuntos
Materiais Biocompatíveis/administração & dosagem , Regeneração Nervosa/efeitos dos fármacos , Traumatismos dos Nervos Periféricos/terapia , Polímeros/administração & dosagem , Alicerces Teciduais , Animais , Materiais Biocompatíveis/metabolismo , Quitosana/administração & dosagem , Quitosana/metabolismo , Colágeno/administração & dosagem , Colágeno/metabolismo , Humanos , Ácido Láctico/administração & dosagem , Ácido Láctico/metabolismo , Regeneração Nervosa/fisiologia , Traumatismos dos Nervos Periféricos/metabolismo , Traumatismos dos Nervos Periféricos/patologia , Nervos Periféricos/efeitos dos fármacos , Nervos Periféricos/metabolismo , Nervos Periféricos/patologia , Poliésteres/administração & dosagem , Poliésteres/metabolismo , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/administração & dosagem , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/metabolismo , Polímeros/metabolismo
4.
Curr Tissue Microenviron Rep ; 1(2): 49-59, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33381765

RESUMO

PURPOSE OF REVIEW: This review focuses on biomechanical and cellular considerations required for development of biomaterials and engineered tissues suitable for implantation following PNI, as well as translational requirements relating to outcome measurements for testing success in patients. RECENT FINDINGS: Therapies that incorporate multiple aspects of the regenerative environment are likely to be key to improving therapies for nerve regeneration. This represents a complex challenge when considering the diversity of biological, chemical and mechanical factors involved. In addition, clinical outcome measures following peripheral nerve repair which are sensitive and responsive to changes in the tissue microenvironment following neural injury and regeneration are required. SUMMARY: Effective new therapies for the treatment of PNI are likely to include engineered tissues and biomaterials able to evoke a tissue microenvironment that incorporates both biochemical and mechanical features supportive to regeneration. Translational development of these technologies towards clinical use in humans drives a concomitant need for improved clinical measures to quantify nerve regeneration.

5.
J Periodontol ; 81(3): 341-343, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29537553
6.
J Periodontol ; 80(9): 1534-40, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19722806

RESUMO

BACKGROUND: Enamel matrix derivative (EMD) is a composite of proteins that was demonstrated histologically to work as an adjunct to periodontal regenerative surgical therapy. The purpose of this study was to evaluate the clinical and histologic effects of EMD as an adjunct to scaling and root planing. METHODS: Four patients with severe chronic periodontitis and scheduled to receive complete dentures were accrued. Probing depth and clinical attachment levels were obtained. Unlimited time was allowed for hand and ultrasonic instrumentation. A notch was placed in the root >or=1 to 2 mm from the apical extent of root planing. EMD was inserted into the pocket, and a periodontal dressing was placed. Patients were seen every 2 weeks for plaque control. At 6 months post-treatment, soft tissue measurements were repeated, and the teeth were removed en bloc and prepared for histomorphologic analysis. RESULTS: Probing depth reduction and clinical attachment level gain were obtained in three-fourths of the specimens. Three of the four specimens analyzed histologically demonstrated new cementum, bone, periodontal ligament, and connective tissue attachment coronal to the notch. In one specimen, the gingival margin had receded below the notch. CONCLUSIONS: The results were unexpected and may represent an aberration. However, the substantial reduction in deep probing depths and clinical attachment level gain in three of four specimens, in addition to the histologic findings of new cementum, new bone, a new periodontal ligament, and a new connective tissue attachment, suggest that EMD may be useful as an adjunct to scaling and root planing in single-rooted teeth.


Assuntos
Periodontite Crônica/terapia , Proteínas do Esmalte Dentário/uso terapêutico , Adulto , Idoso , Perda do Osso Alveolar/terapia , Processo Alveolar/efeitos dos fármacos , Regeneração Óssea/efeitos dos fármacos , Periodontite Crônica/patologia , Cemento Dentário/efeitos dos fármacos , Raspagem Dentária , Feminino , Gengiva/efeitos dos fármacos , Humanos , Masculino , Pessoa de Meia-Idade , Perda da Inserção Periodontal/terapia , Curativos Periodontais , Ligamento Periodontal/efeitos dos fármacos , Bolsa Periodontal/terapia , Regeneração/efeitos dos fármacos , Aplainamento Radicular , Terapia por Ultrassom
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA