Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Acta Neuropathol ; 147(1): 50, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38443601

RESUMO

TDP-43 is an aggregation-prone protein which accumulates in the hallmark pathological inclusions of amyotrophic lateral sclerosis (ALS). However, the analysis of deeply phenotyped human post-mortem samples has shown that TDP-43 aggregation, revealed by standard antibody methods, correlates poorly with symptom manifestation. Recent identification of cryptic-splicing events, such as the detection of Stathmin-2 (STMN-2) cryptic exons, are providing evidence implicating TDP-43 loss-of-function as a potential driving pathomechanism but the temporal nature of TDP-43 loss and its relation to the disease process and clinical phenotype is not known. To address these outstanding questions, we used a novel RNA aptamer, TDP-43APT, to detect TDP-43 pathology and used single molecule in situ hybridization to sensitively reveal TDP-43 loss-of-function and applied these in a deeply phenotyped human post-mortem tissue cohort. We demonstrate that TDP-43APT identifies pathological TDP-43, detecting aggregation events that cannot be detected by classical antibody stains. We show that nuclear TDP-43 pathology is an early event, occurring prior to cytoplasmic accumulation and is associated with loss-of-function measured by coincident STMN-2 cryptic splicing pathology. Crucially, we show that these pathological features of TDP-43 loss-of-function precede the clinical inflection point and are not required for region specific clinical manifestation. Furthermore, we demonstrate that gain-of-function in the form of extensive cytoplasmic accumulation, but not loss-of-function, is the primary molecular correlate of clinical manifestation. Taken together, our findings demonstrate implications for early diagnostics as the presence of STMN-2 cryptic exons and early TDP-43 aggregation events could be detected prior to symptom onset, holding promise for early intervention in ALS.


Assuntos
Esclerose Lateral Amiotrófica , Aptâmeros de Nucleotídeos , Humanos , Esclerose Lateral Amiotrófica/genética , Proteínas de Ligação a DNA/genética , Splicing de RNA , Anticorpos
2.
Brain ; 146(12): 5124-5138, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37450566

RESUMO

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by progressive loss of upper and lower motor neurons. ALS is on a pathogenetic disease spectrum with frontotemporal dementia, referred to as ALS-frontotemporal spectrum disorder (ALS-FTSD). For mutations associated with ALS-FTSD, such as the C9orf72 hexanucleotide repeat expansion, the molecular factors associated with heterogeneity along this spectrum require further characterization. Here, using a targeted NanoString molecular barcoding approach, we interrogate neuroinflammatory dysregulation and heterogeneity at the level of gene expression in post-mortem motor cortex tissue from a cohort of clinically heterogeneous C9-ALS-FTSD cases. We identified 20 dysregulated genes in C9-ALS-FTSD, with enrichment of microglial and inflammatory response gene sets. Two genes with significant correlations to available clinical metrics were selected for validation: FKBP5, a correlate of cognitive function, and brain-derived neurotrophic factor (BDNF), a correlate of disease duration. FKBP5 and its signalling partner, NF-κB, appeared to have a cell type-specific staining distribution, with activated (i.e. nuclear) NF-κB immunoreactivity in C9-ALS-FTSD. Expression of BDNF, a correlate of disease duration, was confirmed to be higher in individuals with long compared to short disease duration using BaseScope™ in situ hybridization. Our analyses also revealed two distinct neuroinflammatory panel signatures (NPS), NPS1 and NPS2, delineated by the direction of expression of proinflammatory, axonal transport and synaptic signalling pathways. We compared NPS between C9-ALS-FTSD cases and those from sporadic ALS and SOD1-ALS cohorts and identified NPS1 and NPS2 across all cohorts. Moreover, a subset of NPS was also able to separate publicly available RNA sequencing data from independent C9-ALS and sporadic ALS cohorts into two inflammatory subgroups. Importantly, NPS subgroups did not clearly segregate with available demographic, genetic, clinical or pathological features, highlighting the value of molecular stratification in clinical trials for inflammatory subgroup identification. Our findings thus underscore the importance of tailoring therapeutic approaches based on distinct molecular signatures that exist between and within ALS-FTSD cohorts.


Assuntos
Esclerose Lateral Amiotrófica , Demência Frontotemporal , Doenças Neurodegenerativas , Humanos , Esclerose Lateral Amiotrófica/patologia , Fator Neurotrófico Derivado do Encéfalo/genética , NF-kappa B , Doenças Neurodegenerativas/genética , Demência Frontotemporal/genética , Proteína C9orf72/genética , Expansão das Repetições de DNA
3.
J Clin Virol ; 164: 105469, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37163963

RESUMO

BACKGROUND: Human papillomavirus associated anogenital cancers are a significant global burden. The detection of biomarkers (circulating tumour DNA; ctDNA or circulating HPV DNA; cHPV DNA) in blood referred to as "liquid biopsy" may support the early diagnosis and monitoring of affected individuals. METHODS: A systematic review, including meta-analysis of studies available in the literature on the utilization of ctDNA and cHPV DNA as diagnostic, predictive, and monitoring biomarker tests of HPV associated anogenital cancers was performed following the criteria of PRISMA. RESULTS: A total of 31 studies were eligible for systematic review; 20 used cHPV DNA in cervical cancers; 7 used ctDNA in cervical cancer; 5 used cHPV DNA in anal cancer; no eligible studies on vulva, vaginal or penile cancer were available. The meta-analysis identified low sensitivity (0.36) and high specificity (0.96) of cHPV DNA as diagnostic for cervical cancer. Comparatively, there was high sensitivity (0.95) and specificity (1.0) of cHPV DNA for the diagnosis of anal cancer. cHPV DNA and/or ctDNA in cervical cancer were prognostic markers associated with poor clinical outcomes. Additionally, in anal cancer the post treatment detection of cHPV DNA was informative in the prediction of treatment response or progression-free survival. CONCLUSION: ctDNA and cHPV DNA are promising diagnostic and prognostic biomarkers for the detection of anogenital disease. Evolution and refinement of molecular tools is likely to improve performance further. Additionally the comparative absence of studies in the vulval, vaginal and penile context warrants further exploration and research.


Assuntos
Neoplasias do Ânus , Infecções por Papillomavirus , Neoplasias do Colo do Útero , Feminino , Humanos , Infecções por Papillomavirus/complicações , Infecções por Papillomavirus/diagnóstico , Papillomavirus Humano , Neoplasias do Ânus/diagnóstico , Neoplasias do Ânus/terapia , Neoplasias do Ânus/patologia , DNA
4.
BMJ Open ; 13(2): e064169, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36725099

RESUMO

OBJECTIVES: Motor neuron disease (MND) is an incurable progressive neurodegenerative disease with limited treatment options. There is a pressing need for innovation in identifying therapies to take to clinical trial. Here, we detail a systematic and structured evidence-based approach to inform consensus decision making to select the first two drugs for evaluation in Motor Neuron Disease-Systematic Multi-arm Adaptive Randomised Trial (MND-SMART: NCT04302870), an adaptive platform trial. We aim to identify and prioritise candidate drugs which have the best available evidence for efficacy, acceptable safety profiles and are feasible for evaluation within the trial protocol. METHODS: We conducted a two-stage systematic review to identify potential neuroprotective interventions. First, we reviewed clinical studies in MND, Alzheimer's disease, Huntington's disease, Parkinson's disease and multiple sclerosis, identifying drugs described in at least one MND publication or publications in two or more other diseases. We scored and ranked drugs using a metric evaluating safety, efficacy, study size and study quality. In stage two, we reviewed efficacy of drugs in MND animal models, multicellular eukaryotic models and human induced pluripotent stem cell (iPSC) studies. An expert panel reviewed candidate drugs over two shortlisting rounds and a final selection round, considering the systematic review findings, late breaking evidence, mechanistic plausibility, safety, tolerability and feasibility of evaluation in MND-SMART. RESULTS: From the clinical review, we identified 595 interventions. 66 drugs met our drug/disease logic. Of these, 22 drugs with supportive clinical and preclinical evidence were shortlisted at round 1. Seven drugs proceeded to round 2. The panel reached a consensus to evaluate memantine and trazodone as the first two arms of MND-SMART. DISCUSSION: For future drug selection, we will incorporate automation tools, text-mining and machine learning techniques to the systematic reviews and consider data generated from other domains, including high-throughput phenotypic screening of human iPSCs.


Assuntos
Doença dos Neurônios Motores , Humanos , Consenso , Células-Tronco Pluripotentes Induzidas , Doença dos Neurônios Motores/tratamento farmacológico , Ensaios Clínicos Controlados Aleatórios como Assunto
5.
J Pathol Clin Res ; 9(1): 44-55, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36226890

RESUMO

Neurodegenerative diseases such as Parkinson's disease (PD), Alzheimer's disease (AD), and amyotrophic lateral sclerosis (ALS) are traditionally considered strictly neurological disorders. However, clinical presentation is not restricted to neurological systems, and non-central nervous system (CNS) manifestations, particularly gastrointestinal (GI) symptoms, are common. Our objective was to understand the systemic distribution of pathology in archived non-CNS tissues, taken as part of routine clinical practice during life from people with ALS. We examined tissue from 13 people who went on to develop ALS; including sporadic ALS (n = 12) and C9orf72 hexanucleotide repeat expansion (n = 1). The tissue cohort consisted of 68 formalin-fixed paraffin embedded samples from 21 surgical cases (some patients having more than one case over their lifetimes), from 8 organ systems, which we examined for evidence of phosphorylated TDP-43 (pTDP-43) pathology. We identified pTDP-43 aggregates in multiple cell types of the GI tract, including macrophages and dendritic cells within the lamina propria; as well as ganglion/neuronal and glial cells of the myenteric plexus. Aggregates were also noted within lymph node parenchyma, blood vessel endothelial cells, and chondrocytes. We note that in all cases with non-CNS pTDP-43 pathology, aggregates were present prior to ALS diagnosis and in some instances preceded neurological symptom onset by more than 10 years. These data imply that patients with microscopically unexplained non-CNS symptoms could have occult protein aggregation that could be detected many years prior to neurological involvement.


Assuntos
Esclerose Lateral Amiotrófica , Humanos , Esclerose Lateral Amiotrófica/genética , Células Endoteliais
6.
J Pathol ; 258(4): 366-381, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36070099

RESUMO

Clinical heterogeneity observed across patients with amyotrophic lateral sclerosis (ALS) is a known complicating factor in identifying potential therapeutics, even within cohorts with the same mutation, such as C9orf72 hexanucleotide repeat expansions (HREs). Thus, further understanding of pathways underlying this heterogeneity is essential for appropriate ALS trial stratification and the meaningful assessment of clinical outcomes. It has been shown that both inflammation and protein misfolding can influence ALS pathogenesis, such as the manifestation or severity of motor or cognitive symptoms. However, there has yet to be a systematic and quantitative assessment of immunohistochemical markers to interrogate the potential relevance of these pathways in an unbiased manner. To investigate this, we extensively characterised features of commonly used glial activation and protein misfolding stains in thousands of images of post-mortem tissue from a heterogeneous cohort of deeply clinically profiled patients with a C9orf72 HRE. Using a random forest model, we show that microglial staining features are the most accurate classifiers of disease status in our panel and that clinicopathological relationships exist between microglial activation status, TDP-43 pathology, and language dysfunction. Furthermore, we detected spatially resolved changes in fused in sarcoma (FUS) staining, suggesting that liquid-liquid phase shift of this aggregation-prone RNA-binding protein may be important in ALS caused by a C9orf72 HRE. Interestingly, no one feature alone significantly impacted the predictiveness of the model, indicating that the collective examination of all features, or a combination of several features, is what allows the model to be predictive. Our findings provide further support to the hypothesis of dysfunctional immune regulation and proteostasis in the pathogenesis of C9-ALS and provide a framework for digital analysis of commonly used neuropathological stains as a tool to enrich our understanding of clinicopathological relationships within and between cohorts. © 2022 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Assuntos
Esclerose Lateral Amiotrófica , Demência Frontotemporal , Humanos , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/patologia , Proteína C9orf72/genética , Demência Frontotemporal/genética , Demência Frontotemporal/patologia , Microglia/patologia , Mutação
7.
BMJ Open ; 12(7): e064173, 2022 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-35798516

RESUMO

INTRODUCTION: Motor neuron disease (MND) is a rapidly fatal neurodegenerative disease. Despite decades of research and clinical trials there remains no cure and only one globally approved drug, riluzole, which prolongs survival by 2-3 months. Recent improved mechanistic understanding of MND heralds a new translational era with many potential targets being identified that are ripe for clinical trials. Motor Neuron Disease Systematic Multi-Arm Adaptive Randomised Trial (MND-SMART) aims to evaluate the efficacy of drugs efficiently and definitively in a multi-arm, multi-stage, adaptive trial. The first two drugs selected for evaluation in MND-SMART are trazodone and memantine. METHODS AND ANALYSIS: Initially, up to 531 participants (177/arm) will be randomised 1:1:1 to oral liquid trazodone, memantine and placebo. The coprimary outcome measures are the Amyotrophic Lateral Sclerosis Functional Rating Scale Revised (ALSFRS-R) and survival. Comparisons will be conducted in four stages. The decision to continue randomising to arms after each stage will be made by the Trial Steering Committee who receive recommendations from the Independent Data Monitoring Committee. The primary analysis of ALSFRS-R will be conducted when 150 participants/arm, excluding long survivors, have completed 18 months of treatment; if positive the survival effect will be inferentially analysed when 113 deaths have been observed in the placebo group. The trial design ensures that other promising drugs can be added for evaluation in planned trial adaptations. Using this novel trial design reduces time, cost and number of participants required to definitively (phase III) evaluate drugs and reduces exposure of participants to potentially ineffective treatments. ETHICS AND DISSEMINATION: MND-SMART was approved by the West of Scotland Research Ethics Committee on 2 October 2019. (REC reference: 19/WS/0123) Results of the study will be submitted for publication in a peer-reviewed journal and a summary provided to participants. TRIAL REGISTRATION NUMBERS: European Clinical Trials Registry (2019-000099-41); NCT04302870.


Assuntos
Esclerose Lateral Amiotrófica , Doença dos Neurônios Motores , Doenças Neurodegenerativas , Trazodona , Esclerose Lateral Amiotrófica/tratamento farmacológico , Método Duplo-Cego , Humanos , Memantina/uso terapêutico , Doença dos Neurônios Motores/tratamento farmacológico , Riluzol/uso terapêutico , Trazodona/uso terapêutico , Resultado do Tratamento
8.
J Pathol ; 256(3): 262-268, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34883532

RESUMO

Up to 50% of amyotrophic lateral sclerosis patients present with cognitive deficits in addition to motor dysfunction, but the molecular mechanisms underlying diverse clinical and pathological presentations remain poorly understood. There is therefore an unmet need to identify molecular drivers of cognitive dysfunction to enable better therapeutic targeting and prognostication. To address this, we employed a non-biased approach to identify molecular targets using a deeply phenotyped, clinically stratified cohort of cognitively affected and unaffected brain regions from three brain regions of 13 amyotrophic lateral sclerosis patients with the same cognitive screening test performed during life. Using NanoString molecular barcoding as a sensitive mRNA sequencing technique on post-mortem tissue, we profiled a data-driven panel of 770 genes using the Neuropathology Panel, followed by region and cell type-specific validation using BaseScope in situ hybridisation and immunohistochemistry. We identified 50 significantly dysregulated genes that are distinct between cognitively affected and unaffected brain regions. Using BaseScope in situ hybridisation, we also demonstrate that macromolecular complex regulation, notably NLRP3 inflammasome modulation, is a potential, therapeutically targetable, pathological correlate of cognitive resilience in ALS. © 2021 The Authors. The Journal of Pathology published by John Wiley & Sons, Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Assuntos
Esclerose Lateral Amiotrófica/genética , Encéfalo/imunologia , Cognição , Disfunção Cognitiva/genética , Inflamassomos/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Resiliência Psicológica , Esclerose Lateral Amiotrófica/imunologia , Esclerose Lateral Amiotrófica/fisiopatologia , Esclerose Lateral Amiotrófica/radioterapia , Encéfalo/fisiopatologia , Disfunção Cognitiva/imunologia , Disfunção Cognitiva/fisiopatologia , Disfunção Cognitiva/psicologia , Perfilação da Expressão Gênica , Humanos , Inflamassomos/imunologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/imunologia , Transcriptoma
9.
Brain Commun ; 3(4): fcab242, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34901853

RESUMO

Amyotrophic lateral sclerosis is a progressive and devastating neurodegenerative disease. Despite decades of clinical trials, effective disease-modifying drugs remain scarce. To understand the challenges of trial design and delivery, we performed a systematic review of Phase II, Phase II/III and Phase III amyotrophic lateral sclerosis clinical drug trials on trial registries and PubMed between 2008 and 2019. We identified 125 trials, investigating 76 drugs and recruiting more than 15 000 people with amyotrophic lateral sclerosis. About 90% of trials used traditional fixed designs. The limitations in understanding of disease biology, outcome measures, resources and barriers to trial participation in a rapidly progressive, disabling and heterogenous disease hindered timely and definitive evaluation of drugs in two-arm trials. Innovative trial designs, especially adaptive platform trials may offer significant efficiency gains to this end. We propose a flexible and scalable multi-arm, multi-stage trial platform where opportunities to participate in a clinical trial can become the default for people with amyotrophic lateral sclerosis.

10.
Front Neurosci ; 15: 705306, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34539336

RESUMO

Pathological hallmarks of amyotrophic lateral sclerosis (ALS), including protein misfolding, are well established in oligodendrocytes. More recently, an RNA trafficking deficit of key myelin proteins has been suggested in oligodendrocytes in ALS but the extent to which this affects myelination and the relative contribution of this to disease pathogenesis is unclear. ALS autopsy research findings showing demyelination contrasts with the routine clinical-pathological workup of ALS cases where it is rare to see white matter abnormalities other than simple Wallerian degeneration secondary to widespread neuronal loss. To begin to address this apparent variance, we undertook a comprehensive evaluation of myelination at an RNA, protein and structural level using human pathological material from sporadic ALS patients, genetic ALS patients (harboring C9orf72 mutation) and age- and sex-matched non-neurological controls. We performed (i) quantitative spatial profiling of the mRNA transcript encoding myelin basic protein (MBP), (ii) quantification of MBP protein and (iii) the first quantitative structural assessment of myelination in ALS post-mortem specimens by electron microscopy. We show no differences in MBP protein levels or ultrastructural myelination, despite a significant dysregulation in the subcellular trafficking of MBP mRNA in ALS patients compared to controls. We therefore confirm that whilst there are cell autonomous mRNA trafficking deficits affecting oligodendrocytes in ALS, this has no effect on myelin structure.

11.
Front Mol Neurosci ; 14: 647895, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33815058

RESUMO

Based on early evidence of in vitro neurotoxicity following exposure to serum derived from patients with amyotrophic lateral sclerosis (ALS), several studies have attempted to explore whether cerebrospinal fluid (CSF) obtained from people with ALS could possess similar properties. Although initial findings proved inconclusive, it is now increasingly recognized that ALS-CSF may exert toxicity both in vitro and in vivo. Nevertheless, the mechanism underlying CSF-induced neurodegeneration remains unclear. This review aims to summarize the 40-year long history of CSF toxicity studies in ALS, while discussing the various mechanisms that have been proposed, including glutamate excitotoxicity, proteotoxicity and oxidative stress. Furthermore, we consider the potential implications of a toxic CSF circulatory system in the pathophysiology of ALS, and also assess its significance in the context of current ALS research.

12.
Acta Neuropathol ; 141(2): 257-279, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33398403

RESUMO

Axonal dysfunction is a common phenotype in neurodegenerative disorders, including in amyotrophic lateral sclerosis (ALS), where the key pathological cell-type, the motor neuron (MN), has an axon extending up to a metre long. The maintenance of axonal function is a highly energy-demanding process, raising the question of whether MN cellular energetics is perturbed in ALS, and whether its recovery promotes axonal rescue. To address this, we undertook cellular and molecular interrogation of multiple patient-derived induced pluripotent stem cell lines and patient autopsy samples harbouring the most common ALS causing mutation, C9orf72. Using paired mutant and isogenic expansion-corrected controls, we show that C9orf72 MNs have shorter axons, impaired fast axonal transport of mitochondrial cargo, and altered mitochondrial bioenergetic function. RNAseq revealed reduced gene expression of mitochondrially encoded electron transport chain transcripts, with neuropathological analysis of C9orf72-ALS post-mortem tissue importantly confirming selective dysregulation of the mitochondrially encoded transcripts in ventral horn spinal MNs, but not in corresponding dorsal horn sensory neurons, with findings reflected at the protein level. Mitochondrial DNA copy number was unaltered, both in vitro and in human post-mortem tissue. Genetic manipulation of mitochondrial biogenesis in C9orf72 MNs corrected the bioenergetic deficit and also rescued the axonal length and transport phenotypes. Collectively, our data show that loss of mitochondrial function is a key mediator of axonal dysfunction in C9orf72-ALS, and that boosting MN bioenergetics is sufficient to restore axonal homeostasis, opening new potential therapeutic strategies for ALS that target mitochondrial function.


Assuntos
Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Axônios/metabolismo , Proteína C9orf72/genética , Metabolismo Energético/genética , Mitocôndrias/metabolismo , Neurônios Motores/metabolismo , Adulto , Idoso , Esclerose Lateral Amiotrófica/patologia , Transporte de Elétrons/genética , Feminino , Dosagem de Genes , Regulação da Expressão Gênica , Homeostase , Humanos , Células-Tronco Pluripotentes Induzidas , Masculino , Pessoa de Meia-Idade , Células do Corno Posterior/patologia
13.
Brain Commun ; 3(4): fcab255, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35350711

RESUMO

Oligodendrocytes are implicated in amyotrophic lateral sclerosis pathogenesis and display transactive response DNA-binding protein-43 (TDP-43) pathological inclusions. To investigate the cell autonomous consequences of TDP-43 mutations on human oligodendrocytes, we generated oligodendrocytes from patient-derived induced pluripotent stem cell lines harbouring mutations in the TARDBP gene, namely G298S and M337V. Through a combination of immunocytochemistry, electrophysiological assessment via whole-cell patch clamping, and three-dimensional cultures, no differences in oligodendrocyte differentiation, maturation or myelination were identified. Furthermore, expression analysis for monocarboxylate transporter 1 (a lactate transporter) coupled with a glycolytic stress test showed no deficit in lactate export. However, using confocal microscopy, we report TDP-43 mutation-dependent pathological mis-accumulation of TDP-43. Furthermore, using in vitro patch-clamp recordings, we identified functional Ca2+-permeable α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor dysregulation in oligodendrocytes. Together, these findings establish a platform for further interrogation of the role of oligodendrocytes and cellular autonomy in TDP-43 proteinopathy.

14.
Brain Commun ; 2(2): fcaa121, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33094283

RESUMO

Various studies have suggested that a neurotoxic cerebrospinal fluid profile could be implicated in amyotrophic lateral sclerosis. Here, we systematically review the evidence for cerebrospinal fluid cytotoxicity in amyotrophic lateral sclerosis and explore its clinical correlates. We searched the following databases with no restrictions on publication date: PubMed, Embase and Web of Science. All studies that investigated cytotoxicity in vitro following exposure to cerebrospinal fluid from amyotrophic lateral sclerosis patients were considered for inclusion. Meta-analysis could not be performed, and findings were instead narratively summarized. Twenty-eight studies were included in our analysis. Both participant characteristics and study conditions including cerebrospinal fluid concentration, exposure time and culture model varied considerably across studies. Of 22 studies assessing cell viability relative to controls, 19 studies reported a significant decrease following exposure to cerebrospinal fluid from patients with amyotrophic lateral sclerosis, while three early studies failed to observe any difference. Seven of eight studies evaluating apoptosis observed significant increases in the levels of apoptotic markers following exposure to cerebrospinal fluid from patients with amyotrophic lateral sclerosis, with the remaining study reporting a qualitative difference. Although five studies investigated the possible relationship between cerebrospinal fluid cytotoxicity and patient characteristics, such as age, gender and disease duration, none demonstrated an association with any of the factors. In conclusion, our analysis suggests that cerebrospinal fluid cytotoxicity is a feature of sporadic and possibly also of familial forms of amyotrophic lateral sclerosis. Further research is, however, required to better characterize its underlying mechanisms and to establish its possible contribution to amyotrophic lateral sclerosis pathophysiology.

15.
Front Neurosci ; 14: 511, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32523508

RESUMO

Background: Amyotrophic lateral sclerosis (ALS) is a rapidly progressive fatal neurodegenerative condition. There are no effective treatments. The only globally licensed medication, that prolongs life by 2-3 months, was approved by the FDA in 1995. One reason for the absence of effective treatments is disease heterogeneity noting that ALS is clinically heterogeneous and can be considered to exist on a neuropathological spectrum with frontotemporal dementia. Despite this significant clinical heterogeneity, protein misfolding has been identified as a unifying pathological feature in these cases. Based on this shared pathophysiology, we carried out a systematic review and meta-analysis to assess the therapeutic efficacy of compounds that specifically target protein misfolding in preclinical studies of both ALS and FTD. Methods: Three databases: (i) PubMed, (ii) MEDLINE, and (iii) EMBASE were searched. All studies comparing the effect of treatments targeting protein misfolding in pre-clinical ALS or FTD models to a control group were retrieved. Results: Systematic review identified 70 pre-clinical studies investigating the effects of therapies targeting protein misfolding on survival. Meta-analysis revealed that targeting protein misfolding did significantly improve survival compared to untreated controls (p < 0.001, df = 68, α = 0.05, CI 1.05-1.16), with no evidence of heterogeneity between studies (I 2 = 0%). Further subgroup analyses, evaluating the effect of timing of these interventions, showed that, only treating prior to symptom onset (n = 33), significantly improved survival (p < 0.001, df = 31, α = 0.05, CI 1.08-1.29), although this likely reflects the inadequate sample size of later time points. Furthermore, arimoclomol was found to significantly reduce secondary outcome measures including: (i) histological outcomes, (ii) behavioral outcomes, and (iii) biochemical outcomes (p < 0.005). Conclusions: This analysis supports the hypothesis that protein misfolding plays an important role in the pathogenesis of ALS and FTD and that targeting protein misfolding, at least in pre-clinical models, can significantly improve survival, especially if such an intervention is administered prior to symptom onset.

16.
Brain Commun ; 2(1): fcaa009, 2020 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-32226938

RESUMO

The C9orf72 hexanucleotide repeat expansion is the commonest known genetic mutation in amyotrophic lateral sclerosis. A neuropathological hallmark is the intracellular accumulation of RNA foci. The role that RNA foci play in the pathogenesis of amyotrophic lateral sclerosis is widely debated. Historically, C9orf72 RNA foci have been identified using in situ hybridization. Here, we have implemented BaseScope™, a high-resolution modified in situ hybridization technique. We demonstrate that previous studies have underestimated the abundance of RNA foci in neurons and glia. This improved detection allowed us to investigate the abundance, regional distribution and cell type specificity of sense C9orf72 RNA foci in post-mortem brain and spinal cord tissue of six deeply clinically phenotyped C9orf72 patients and six age- and sex-matched controls. We find a correlation between RNA foci and the accumulation of transactive response DNA-binding protein of 43 kDa in spinal motor neurons (rs = 0.93; P = 0.008), but not in glia or cortical motor neurons. We also demonstrate that there is no correlation between the presence of RNA foci and the accumulation of transactive response DNA binding protein of 43 kDa in extra-motor brain regions. Furthermore, there is no association between the presence of RNA foci and cognitive indices. These results highlight the utility of BaseScope™ in the clinicopathological assessment of the role of sense RNA foci in C9orf72.

17.
J Neurol Neurosurg Psychiatry ; 91(2): 149-157, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31515300

RESUMO

OBJECTIVE: Approximately 35% of patients with amyotrophic lateral sclerosis (ALS) exhibit mild cognitive deficits in executive functions, language and fluency, without dementia. The precise pathology of these extramotor symptoms has remained unknown. This study aimed to determine the pathological correlate of cognitive impairment in patients with non-demented ALS. METHODS: In-depth neuropathological analysis of 27 patients with non-demented ALS who had undergone cognitive testing (Edinburgh Cognitive and Behaviour ALS Screen (ECAS)) during life. Analysis involved assessing 43 kDa Tar-DNA binding protein (TDP-43) accumulation in brain regions specifically involved in executive functions, language functions and verbal fluency to ascertain whether functional deficits would relate to a specific regional distribution of pathology. RESULTS: All patients with cognitive impairment had TDP-43 pathology in extramotor brain regions (positive predictive value of 100%). The ECAS also predicted TDP-43 pathology with 100% specificity in brain regions associated with executive, language and fluency domains. We also detected a subgroup with no cognitive dysfunction, despite having substantial TDP-43 pathology, so called mismatch cases. CONCLUSIONS: Cognitive impairment as detected by the ECAS is a valid predictor of TDP-43 pathology in non-demented ALS. The profile of mild cognitive deficits specifically predicts regional cerebral involvement. These findings highlight the utility of the ECAS in accurately assessing the pathological burden of disease.


Assuntos
Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/psicologia , Córtex Cerebral/metabolismo , Disfunção Cognitiva/metabolismo , Proteínas de Ligação a DNA/metabolismo , Função Executiva , Transtornos da Linguagem/metabolismo , Comportamento Verbal , Disfunção Cognitiva/complicações , Feminino , Humanos , Transtornos da Linguagem/complicações , Masculino , Pessoa de Meia-Idade , Testes Neuropsicológicos/estatística & dados numéricos
18.
J Pathol ; 250(1): 67-78, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31579943

RESUMO

Amyotrophic lateral sclerosis (ALS) is characterised by progressive motor neuron degeneration. Although there are over 40 genes associated with causal monogenetic mutations, the majority of ALS patients are not genetically determined. Causal ALS mutations are being increasingly mechanistically studied, though how these mechanisms converge and diverge between the multiple known familial causes of ALS (fALS) and sporadic forms of ALS (sALS) and furthermore between different neuron types, is poorly understood. One common pathway that is implicated in selective motor neuron death is enhanced α-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate (AMPAR)-mediated excitoxicity. Specifically, human in vitro and pathological evidence has linked the C9orf72 repeat expansion mutation to a relative increase in the Ca2+ -permeable AMPAR population due to AMPAR subunit dysregulation. Here, we provide the first comparative quantitative assessment of the expression profile of AMPAR subunit transcripts, using BaseScope, in post-mortem lower motor neurons (spinal cord, anterior horn), upper motor neurons (motor cortex) and neurons of the pre-frontal cortex in sALS and fALS due to mutations in SOD1 and C9orf72. Our data indicated that AMPAR dysregulation is prominent in lower motor neurons in all ALS cases. However, sALS and mutant C9orf72 cases exhibited GluA1 upregulation whereas mutant SOD1 cases displayed GluA2 down regulation. We also showed that sALS cases exhibited widespread AMPAR dysregulation in the motor and pre-frontal cortex, though the exact identity of the AMPAR subunit being dysregulated was dependent on brain region. In contrast, AMPAR dysregulation in mutant SOD1 and C9orf72 cases was restricted to lower motor neurons only. Our data highlight the complex dysregulation of AMPAR subunit expression that reflects both converging and diverging mechanisms at play between different brain regions and between ALS cohorts. © 2019 Authors. Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.


Assuntos
Esclerose Lateral Amiotrófica/genética , Encéfalo/metabolismo , Proteína C9orf72/genética , Mutação , Receptores de AMPA/genética , Receptores de Glutamato/genética , Medula Espinal/metabolismo , Superóxido Dismutase-1/genética , Idoso , Esclerose Lateral Amiotrófica/patologia , Esclerose Lateral Amiotrófica/fisiopatologia , Autopsia , Encéfalo/patologia , Encéfalo/fisiopatologia , Estudos de Casos e Controles , Linhagem Celular , Feminino , Regulação da Expressão Gênica , Predisposição Genética para Doença , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Masculino , Pessoa de Meia-Idade , Neurônios Motores/metabolismo , Receptores de AMPA/metabolismo , Receptores de Glutamato/metabolismo , Medula Espinal/patologia , Medula Espinal/fisiopatologia
19.
Artigo em Inglês | MEDLINE | ID: mdl-31594398

RESUMO

Objectives: People with motor neurone disease (pwMND) experience communication impairments due to speech and motor dysfunction. Communication support in the form of Augmentative and Alternative Communication (AAC) in conjunction with Assistive Technology (AT) access methods are available, however, variation in provision care pathways exists across Scotland. We conducted a baseline study of communication support for pwMND in Scotland to inform and improve future service provision.Methods: A cross-sectional population-based study was undertaken. Anonymised demographic and clinical phenotypic data for all pwMND in Scotland were extracted from the Care Audit Research Evaluation of MND (CARE-MND) platform, the National MND Register for Scotland. Additional information for AT loans was provided by the third sector charitable organization MND Scotland (MNDS).Results: In total, 371 pwMND were included, 43% of all pwMND were recorded as having impaired speech (recent ALSFRS-R score assessment [Formula: see text]3) and 69% had been referred to Speech and Language Therapist (SLT) services, although there was variation in referral time from diagnosis date. AAC equipment had been acquired by 17.3% of all pwMND; most commonly iPads and the LightwriterTM speech generating device.Conclusions: Our data highlight a high prevalence of speech impairment in pwMND irrespective of the subtype diagnosis. We therefore recommend standardized care pathways and earlier access to coordinated SLT and Occupational Therapist services to enable prospective and personalized decision making. Our findings further highlight the need for qualitative research to understand the preferences and impact of such interventions from the perspective of the user and their communication partners.


Assuntos
Esclerose Lateral Amiotrófica/epidemiologia , Transtornos da Comunicação/epidemiologia , Doença dos Neurônios Motores/epidemiologia , Tecnologia Assistiva , Comunicação , Estudos Transversais , Feminino , Humanos , Incidência , Masculino , Doença dos Neurônios Motores/diagnóstico , Escócia/epidemiologia , Tecnologia Assistiva/efeitos adversos , Inquéritos e Questionários
20.
Front Mol Neurosci ; 12: 124, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31164803

RESUMO

One of the key pathways implicated in amyotrophic lateral sclerosis (ALS) pathogenesis is abnormal RNA processing. Studies to date have focussed on defects in RNA stability, splicing, and translation, but this review article will focus on the largely overlooked RNA processing mechanism of RNA trafficking, with particular emphasis on the importance of glia. In the central nervous system (CNS), oligodendrocytes can extend processes to myelinate and metabolically support up to 50 axons and astrocytes can extend processes to cover up to 100,000 synapses, all with differing local functional requirements. Furthermore, many of the proteins required in these processes are large, aggregation-prone proteins which would be difficult to transport in their fully translated, terminally-folded state. This, therefore, highlights a critical requirement in these cells for local control of protein translation, which is achieved through specific trafficking of mRNAs to each process and local translation therein. Given that a large number of RNA-binding proteins have been implicated in ALS, and RNA-binding proteins are essential for trafficking mRNAs from the nucleus to glial processes for local translation, RNA misprocessing in glial cells is a likely source of cellular dysfunction in ALS. To date, neurons have been the focus of ALS research, but an intrinsic deficit in glia, namely astrocytes and oligodendrocytes, could have an additive effect on declining neuronal function in ALS. This review article aims to highlight the key evidence that supports the contention that RNA trafficking deficits in astrocytes and oligodendrocytes may contribute to in ALS.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...