Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37425692

RESUMO

In combination with cell intrinsic properties, interactions in the tumor microenvironment modulate therapeutic response. We leveraged high-plex single-cell spatial transcriptomics to dissect the remodeling of multicellular neighborhoods and cell-cell interactions in human pancreatic cancer associated with specific malignant subtypes and neoadjuvant chemotherapy/radiotherapy. We developed Spatially Constrained Optimal Transport Interaction Analysis (SCOTIA), an optimal transport model with a cost function that includes both spatial distance and ligand-receptor gene expression. Our results uncovered a marked change in ligand-receptor interactions between cancer-associated fibroblasts and malignant cells in response to treatment, which was supported by orthogonal datasets, including an ex vivo tumoroid co-culture system. Overall, this study demonstrates that characterization of the tumor microenvironment using high-plex single-cell spatial transcriptomics allows for identification of molecular interactions that may play a role in the emergence of chemoresistance and establishes a translational spatial biology paradigm that can be broadly applied to other malignancies, diseases, and treatments.

2.
Nat Biotechnol ; 40(12): 1794-1806, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36203011

RESUMO

Resolving the spatial distribution of RNA and protein in tissues at subcellular resolution is a challenge in the field of spatial biology. We describe spatial molecular imaging, a system that measures RNAs and proteins in intact biological samples at subcellular resolution by performing multiple cycles of nucleic acid hybridization of fluorescent molecular barcodes. We demonstrate that spatial molecular imaging has high sensitivity (one or two copies per cell) and very low error rate (0.0092 false calls per cell) and background (~0.04 counts per cell). The imaging system generates three-dimensional, super-resolution localization of analytes at ~2 million cells per sample. Cell segmentation is morphology based using antibodies, compatible with formalin-fixed, paraffin-embedded samples. We measured multiomic data (980 RNAs and 108 proteins) at subcellular resolution in formalin-fixed, paraffin-embedded tissues (nonsmall cell lung and breast cancer) and identified >18 distinct cell types, ten unique tumor microenvironments and 100 pairwise ligand-receptor interactions. Data on >800,000 single cells and ~260 million transcripts can be accessed at http://nanostring.com/CosMx-dataset .


Assuntos
Proteínas , RNA , Humanos , Inclusão em Parafina , RNA/genética , Imagem Molecular , Formaldeído
3.
Proc Natl Acad Sci U S A ; 118(23)2021 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-34088846

RESUMO

DNA synthesis by polymerases is essential for life. Deprotonation of the nucleophile 3'-OH is thought to be the obligatory first step in the DNA synthesis reaction. We have examined each entity surrounding the nucleophile 3'-OH in the reaction catalyzed by human DNA polymerase (Pol) η and delineated the deprotonation process by combining mutagenesis with steady-state kinetics, high-resolution structures of in crystallo reactions, and molecular dynamics simulations. The conserved S113 residue, which forms a hydrogen bond with the primer 3'-OH in the ground state, stabilizes the primer end in the active site. Mutation of S113 to alanine destabilizes primer binding and reduces the catalytic efficiency. Displacement of a water molecule that is hydrogen bonded to the 3'-OH using the 2'-OH of a ribonucleotide or 2'-F has little effect on catalysis. Moreover, combining the S113A mutation with 2'-F replacement, which removes two potential hydrogen acceptors of the 3'-OH, does not reduce the catalytic efficiency. We conclude that the proton can leave the O3' via alternative paths, supporting the hypothesis that binding of the third Mg2+ initiates the reaction by breaking the α-ß phosphodiester bond of an incoming deoxyribonucleoside triphosphate (dNTP).


Assuntos
DNA Polimerase Dirigida por DNA/química , DNA/química , Prótons , Substituição de Aminoácidos , DNA/genética , DNA Polimerase Dirigida por DNA/genética , Humanos , Cinética , Mutação de Sentido Incorreto
4.
Proc Natl Acad Sci U S A ; 115(42): 10660-10665, 2018 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-30275308

RESUMO

Oxidatively induced DNA lesions 8,5'-cyclopurine-2'-deoxynucleosides (cdPus) are prevalent and cytotoxic by impeding DNA replication and transcription. Both the 5'R- and 5'S-diastereomers of cdPu can be removed by nucleotide excision repair; however, the 5'S-cdPu is more resistant to repair than the 5'R counterpart. Here, we report the crystal structures of human polymerase (Pol) η bypassing 5'S-8,5'-cyclo-2'-deoxyadenosine (cdA) in insertion and the following two extension steps. The cdA-containing DNA structures vary in response to the protein environment. Supported by the "molecular splint" of Pol η, the structure of 5'S-cdA at 1.75-Šresolution reveals that the backbone is pinched toward the minor groove and the adenine base is tilted. In the templating position, the cdA takes up the extra space usually reserved for the thymine dimer, and dTTP is efficiently incorporated by Pol η in the presence of Mn2+ Rigid distortions of the DNA duplex by cdA, however, prevent normal base pairing and hinder immediate primer extension by Pol η. Our results provide structural insights into the strong replication blockage effect and the mutagenic property of the cdPu lesions in cells.


Assuntos
Dano ao DNA , DNA Polimerase Dirigida por DNA/química , DNA Polimerase Dirigida por DNA/metabolismo , Desoxiadenosinas/toxicidade , Nucleotídeos/metabolismo , Pareamento de Bases , Cálcio/química , Cálcio/metabolismo , Cristalografia por Raios X , Reparo do DNA , Replicação do DNA , Humanos , Magnésio/química , Magnésio/metabolismo , Manganês/química , Manganês/metabolismo , Modelos Moleculares , Mutagênicos , Nucleotídeos/química , Conformação Proteica
5.
Nat Commun ; 8: 14049, 2017 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-28091601

RESUMO

Characterizing the transcriptome of individual cells is fundamental to understanding complex biological systems. We describe a droplet-based system that enables 3' mRNA counting of tens of thousands of single cells per sample. Cell encapsulation, of up to 8 samples at a time, takes place in ∼6 min, with ∼50% cell capture efficiency. To demonstrate the system's technical performance, we collected transcriptome data from ∼250k single cells across 29 samples. We validated the sensitivity of the system and its ability to detect rare populations using cell lines and synthetic RNAs. We profiled 68k peripheral blood mononuclear cells to demonstrate the system's ability to characterize large immune populations. Finally, we used sequence variation in the transcriptome data to determine host and donor chimerism at single-cell resolution from bone marrow mononuclear cells isolated from transplant patients.


Assuntos
Leucócitos Mononucleares/metabolismo , Transcriptoma , Linhagem Celular , Feminino , Humanos , Leucócitos Mononucleares/química , Masculino , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Análise de Célula Única
6.
Nucleic Acids Res ; 44(3): e22, 2016 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-26384417

RESUMO

Next-generation sequencing (NGS) technologies have transformed genomic research and have the potential to revolutionize clinical medicine. However, the background error rates of sequencing instruments and limitations in targeted read coverage have precluded the detection of rare DNA sequence variants by NGS. Here we describe a method, termed CypherSeq, which combines double-stranded barcoding error correction and rolling circle amplification (RCA)-based target enrichment to vastly improve NGS-based rare variant detection. The CypherSeq methodology involves the ligation of sample DNA into circular vectors, which contain double-stranded barcodes for computational error correction and adapters for library preparation and sequencing. CypherSeq is capable of detecting rare mutations genome-wide as well as those within specific target genes via RCA-based enrichment. We demonstrate that CypherSeq is capable of correcting errors incurred during library preparation and sequencing to reproducibly detect mutations down to a frequency of 2.4 × 10(-7) per base pair, and report the frequency and spectra of spontaneous and ethyl methanesulfonate-induced mutations across the Saccharomyces cerevisiae genome.


Assuntos
DNA/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Mutação , Linhagem Celular , Genes p53 , Humanos , Reação em Cadeia da Polimerase/métodos , Saccharomyces cerevisiae/genética
7.
Proc Natl Acad Sci U S A ; 111(25): 9133-8, 2014 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-24927576

RESUMO

Platinum drugs are a mainstay of anticancer chemotherapy. Nevertheless, tumors often display inherent or acquired resistance to platinum-based treatments, prompting the search for new compounds that do not exhibit cross-resistance with current therapies. Phenanthriplatin, cis-diamminephenanthridinechloroplatinum(II), is a potent monofunctional platinum complex that displays a spectrum of activity distinct from those of the clinically approved platinum drugs. Inhibition of RNA polymerases by phenanthriplatin lesions has been implicated in its mechanism of action. The present study evaluates the ability of phenanthriplatin lesions to inhibit DNA replication, a function disrupted by traditional platinum drugs. Phenanthriplatin lesions effectively inhibit DNA polymerases ν, ζ, and κ and the Klenow fragment. In contrast to results obtained with DNA damaged by cisplatin, all of these polymerases were capable of inserting a base opposite a phenanthriplatin lesion, but only Pol η, an enzyme efficient in translesion synthesis, was able to fully bypass the adduct, albeit with low efficiency. X-ray structural characterization of Pol η complexed with site-specifically platinated DNA at both the insertion and +1 extension steps reveals that phenanthriplatin on DNA interacts with and inhibits Pol η in a manner distinct from that of cisplatin-DNA adducts. Unlike cisplatin and oxaliplatin, the efficacies of which are influenced by Pol η expression, phenanthriplatin is highly toxic to both Pol η+ and Pol η- cells. Given that increased expression of Pol η is a known mechanism by which cells resist cisplatin treatment, phenanthriplatin may be valuable in the treatment of cancers that are, or can easily become, resistant to cisplatin.


Assuntos
Antineoplásicos , Dano ao DNA , DNA de Neoplasias , DNA Polimerase Dirigida por DNA , Proteínas de Neoplasias , Neoplasias , Compostos Organoplatínicos , Fenantridinas , Antineoplásicos/química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Cristalografia por Raios X , DNA de Neoplasias/biossíntese , DNA de Neoplasias/química , DNA Polimerase Dirigida por DNA/química , DNA Polimerase Dirigida por DNA/metabolismo , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Humanos , Proteínas de Neoplasias/química , Proteínas de Neoplasias/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/enzimologia , Compostos Organoplatínicos/química , Compostos Organoplatínicos/farmacologia , Fenantridinas/química , Fenantridinas/farmacologia , Relação Estrutura-Atividade
8.
Proc Natl Acad Sci U S A ; 111(8): 2954-9, 2014 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-24449906

RESUMO

DNA polymerase ζ (Pol ζ) is a eukaryotic B-family DNA polymerase that specializes in translesion synthesis and is essential for normal embryogenesis. At a minimum, Pol ζ consists of a catalytic subunit Rev3 and an accessory subunit Rev7. Mammalian Rev3 contains >3,000 residues and is twice as large as the yeast homolog. To date, no vertebrate Pol ζ has been purified for biochemical characterization. Here we report purification of a series of human Rev3 deletion constructs expressed in HEK293 cells and identification of a minimally catalytically active human Pol ζ variant. With a tagged form of an active Pol ζ variant, we isolated two additional accessory subunits of human Pol ζ, PolD2 and PolD3. The purified four-subunit Pol ζ4 (Rev3-Rev7-PolD2-PolD3) is much more efficient and more processive at bypassing a 1,2-intrastrand d(GpG)-cisplatin cross-link than the two-subunit Pol ζ2 (Rev3-Rev7). We show that complete bypass of cisplatin lesions requires Pol η to insert dCTP opposite the 3' guanine and Pol ζ4 to extend the primers.


Assuntos
Cisplatino/metabolismo , Reparo do DNA/fisiologia , DNA Polimerase Dirigida por DNA/metabolismo , DNA/biossíntese , Cromatografia em Gel , Cromatografia por Troca Iônica , DNA Polimerase III/metabolismo , Primers do DNA/genética , Proteínas de Ligação a DNA/metabolismo , DNA Polimerase Dirigida por DNA/isolamento & purificação , Fluoresceína , Células HEK293 , Holoenzimas/isolamento & purificação , Holoenzimas/metabolismo , Humanos , Proteínas Mad2/metabolismo
9.
Proc Natl Acad Sci U S A ; 110(20): 8146-51, 2013 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-23630267

RESUMO

Somatic hypermutation is programmed base substitutions in the variable regions of Ig genes for high-affinity antibody generation. Two motifs, RGYW and WA (R, purine; Y, pyrimidine; W, A or T), have been found to be somatic hypermutation hotspots. Overwhelming evidence suggests that DNA polymerase η (Pol η) is responsible for converting the WA motif to WG by misincorporating dGTP opposite the templating T. To elucidate the molecular mechanism, crystal structures and kinetics of human Pol η substituting dGTP for dATP in four sequence contexts, TA, AA, GA, and CA, have been determined and compared. The T:dGTP wobble base pair is stabilized by Gln-38 and Arg-61, two uniquely conserved residues among Pol η. Weak base paring of the W (T:A or A:T) at the primer end and their distinct interactions with Pol η lead to misincorporation of G in the WA motif. Between two WA motifs, our kinetic and structural data indicate that A-to-G mutation occurs more readily in the TA context than AA. Finally, Pol η can extend the T:G mispair efficiently to complete the mutagenesis.


Assuntos
DNA Polimerase Dirigida por DNA/química , Hipermutação Somática de Imunoglobulina , Trifosfato de Adenosina/química , Motivos de Aminoácidos , Cátions , Nucleotídeos de Desoxiguanina/química , Humanos , Imunoglobulinas/química , Cinética , Mutagênese Sítio-Dirigida , Mutação , Conformação de Ácido Nucleico
10.
Proc Natl Acad Sci U S A ; 109(19): 7269-74, 2012 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-22529383

RESUMO

Cisplatin (cis-diamminedichloroplatinum) and related compounds cause DNA damage and are widely used as anticancer agents. Chemoresistance to cisplatin treatment is due in part to translesion synthesis by human DNA polymerase η (hPol η). Here, we report crystal structures of hPol η complexed with intrastrand cisplatin-1,2-cross-linked DNA, representing four consecutive steps in translesion synthesis. In contrast to the generally enlarged and nondiscriminating active site of Y-family polymerases like Dpo4, Pol η is specialized for efficient bypass of UV-cross-linked pyrimidine dimers. Human Pol η differs from the yeast homolog in its binding of DNA template. To incorporate deoxycytidine opposite cisplatin-cross-linked guanines, hPol η undergoes a specific backbone rearrangement to accommodate the larger base dimer and minimizes the DNA distortion around the lesion. Our structural analyses show why Pol η is inefficient at extending primers after cisplatin lesions, which necessitates a second translesion DNA polymerase to complete bypass in vivo. A hydrophobic pocket near the primer-binding site in human Pol η is identified as a potential drug target for inhibiting translesion synthesis and, thereby, reducing chemoresistance.


Assuntos
Cisplatino/química , DNA Polimerase Dirigida por DNA/química , DNA/química , Resistência a Medicamentos , Trifosfato de Adenosina/química , Trifosfato de Adenosina/metabolismo , Sequência de Bases , Sítios de Ligação/genética , Cisplatino/farmacologia , Reagentes de Ligações Cruzadas/química , Reagentes de Ligações Cruzadas/farmacologia , Cristalografia por Raios X , DNA/genética , DNA/metabolismo , DNA Polimerase Dirigida por DNA/genética , DNA Polimerase Dirigida por DNA/metabolismo , Humanos , Cinética , Modelos Moleculares , Estrutura Molecular , Mutação , Neoplasias/tratamento farmacológico , Neoplasias/enzimologia , Neoplasias/genética , Conformação de Ácido Nucleico , Conformação Proteica , Estrutura Terciária de Proteína , Dímeros de Pirimidina/química , Dímeros de Pirimidina/metabolismo , Homologia de Sequência de Aminoácidos
11.
Nucleic Acids Res ; 36(16): 5405-16, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18701646

RESUMO

The three-dimensional X-ray crystal structure of the 'rare cutting' type II restriction endonuclease SgrAI bound to cognate DNA is presented. SgrAI forms a dimer bound to one duplex of DNA. Two Ca(2+) bind in the enzyme active site, with one ion at the interface between the protein and DNA, and the second bound distal from the DNA. These sites are differentially occupied by Mn(2+), with strong binding at the protein-DNA interface, but only partial occupancy of the distal site. The DNA remains uncleaved in the structures from crystals grown in the presence of either divalent cation. The structure of the dimer of SgrAI is similar to those of Cfr10I, Bse634I and NgoMIV, however no tetrameric structure of SgrAI is observed. DNA contacts to the central CCGG base pairs of the SgrAI canonical target sequence (CR|CCGGYG, | marks the site of cleavage) are found to be very similar to those in the NgoMIV/DNA structure (target sequence G|CCGGC). Specificity at the degenerate YR base pairs of the SgrAI sequence may occur via indirect readout using DNA distortion. Recognition of the outer GC base pairs occurs through a single contact to the G from an arginine side chain located in a region unique to SgrAI.


Assuntos
DNA/química , Desoxirribonucleases de Sítio Específico do Tipo II/química , Regulação Alostérica , Pareamento de Bases , Sítios de Ligação , Cálcio/química , Cristalografia por Raios X , DNA/metabolismo , Desoxirribonucleases de Sítio Específico do Tipo II/metabolismo , Manganês/química , Modelos Moleculares , Ligação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...