Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem Lett ; 14(50): 11490-11496, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38085985

RESUMO

Using optical spectroscopy, X-ray diffraction, and electrical transport measurements, we have studied the pressure-induced metallization in BaH2 and Ba8H46. Our combined measurements suggest a structural phase transition from BaH2-II to BaH2-III accompanied by band gap closure and transformation to a metallic state at 57 GPa. The metallization is confirmed by resistance measurements as a function of the pressure and temperature. We also confirm that, with further hydrogenation, BaH2 forms the previously observed Weaire-Phelan Ba8H46, synthesized at 45 GPa and 1200 K. In this compound, metallization pressure is shifted to 85 GPa. Through a comparison of the properties of these two compounds, a question is raised about the importance of the hydrogen content in the electronic properties of hydride systems.

2.
J Chem Phys ; 159(13)2023 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-37795788

RESUMO

The binary Xe-Ar system has been studied in a series of high pressure diamond anvil cell experiments up to 60 GPa at 300 K. In-situ x-ray powder diffraction and Raman spectroscopy indicate the formation of a van der Waals compound, XeAr2, at above 3.5 GPa. Powder x-ray diffraction analysis demonstrates that XeAr2 adopts a Laves MgZn2-type structure with space group P63/mmc and cell parameters a = 6.595 Å and c = 10.716 Å at 4 GPa. Density functional theory calculations support the structure determination, with agreement between experimental and calculated Raman spectra. Our DFT calculations suggest that XeAr2 would remain stable without a structural transformation or decomposition into elemental Xe and Ar up to at least 80 GPa.

3.
Nat Mater ; 22(4): 489-494, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36959503

RESUMO

Pressure-induced magnetic phase transitions are attracting interest as a means to detect superconducting behaviour at high pressures in diamond anvil cells, but determining the local magnetic properties of samples is a challenge due to the small volumes of sample chambers. Optically detected magnetic resonance of nitrogen vacancy centres in diamond has recently been used for the in situ detection of pressure-induced phase transitions. However, owing to their four orientation axes and temperature-dependent zero-field splitting, interpreting these optically detected magnetic resonance spectra remains challenging. Here we study the optical and spin properties of implanted silicon vacancy defects in 4H-silicon carbide that exhibit single-axis and temperature-independent zero-field splitting. Using this technique, we observe the magnetic phase transition of Nd2Fe14B at about 7 GPa and map the critical temperature-pressure phase diagram of the superconductor YBa2Cu3O6.6. These results highlight the potential of silicon vacancy-based quantum sensors for in situ magnetic detection at high pressures.

4.
Nano Lett ; 22(24): 9943-9950, 2022 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-36507869

RESUMO

Spin defects in silicon carbide appear to be a promising tool for various quantum technologies, especially for quantum sensing. However, this technique has been used only at ambient pressure until now. Here, by combining this technique with diamond anvil cell, we systematically study the optical and spin properties of divacancy defects created at the surface of SiC at pressures up to 40 GPa. The zero-field-splitting of the divacancy spins increases linearly with pressure with a slope of 25.1 MHz/GPa, which is almost two-times larger than that of nitrogen-vacancy centers in diamond. The corresponding pressure sensing sensitivity is about 0.28 MPa/Hz-1/2. The coherent control of divacancy demonstrates that coherence time decreases as pressure increases. Based on these, the pressure-induced magnetic phase transition of Nd2Fe14B sample at high pressures was detected. These experiments pave the way to use divacancy in quantum technologies such as pressure sensing and magnetic detection at high pressures.

5.
J Phys Chem Lett ; 13(36): 8447-8454, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-36053162

RESUMO

Through a series of high pressure diamond anvil experiments, we report the synthesis of alkaline earth (Ca, Sr, Ba) tetrahydrides, and investigate their properties through Raman spectroscopy, X-ray diffraction, and density functional theory calculations. The tetrahydrides incorporate both atomic and quasi-molecular hydrogen, and we find that the frequency of the intramolecular stretching mode of the H2δ- units downshifts from Ca to Sr and to Ba upon compression. The experimental results indicate that the larger the host cation, the longer the H2δ- bond. Analysis of the electron localization function (ELF) demonstrates that the lengthening of the H-H bond is caused by the charge transfer from the metal to H2δ- and by the steric effect of the metal host on the H-H bond. This effect is most prominent for BaH4, where the precompression of H2δ- units at 50 GPa results in bond lengths comparable to that of pure H2 above 275 GPa.

6.
Rev Sci Instrum ; 93(6): 063901, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35778034

RESUMO

There is an ever increasing interest in studying dynamic-pressure dependent phenomena utilizing dynamic Diamond Anvil Cells (dDACs), devices capable of a highly controlled rate of compression. Here, we characterize and compare the compression rate of dDACs in which the compression is actuated via three different methods: (1) stepper motor (S-dDAC), (2) gas membrane (M-dDAC), and (3) piezoactuator (P-dDAC). The compression rates of these different types of dDAC were determined solely on millisecond time-resolved R1-line fluorescence of a ruby sphere located within the sample chamber. Furthermore, these different dynamic compression-techniques have been described and characterized over a broad temperature and pressure range from 10 to 300 K and 0-50 GPa. At room temperature, piezoactuation (P-dDAC) has a clear advantage in controlled extremely fast compression, having recorded a compression rate of ∼7 TPa/s, which is also found to be primarily influenced by the charging time of the piezostack. At 40-250 K, gas membranes (M-dDAC) have also been found to generate rapid compression of ∼0.5-3 TPa/s and are readily interfaced with moderate cryogenic and ultrahigh vacuum conditions. Approaching more extreme cryogenic conditions (<10 K), a stepper motor driven lever arm (S-dDAC) offers a solution for high-precision moderate compression rates in a regime where P-dDACs and M-dDACs can become difficult to incorporate. The results of this paper demonstrate the applicability of different dynamic compression techniques, and when applied, they can offer us new insights into matter's response to strain, which is highly relevant to physics, geoscience, and chemistry.

7.
Phys Rev Lett ; 128(21): 215702, 2022 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-35687440

RESUMO

Through a series of x-ray diffraction, optical spectroscopy diamond anvil cell experiments, combined with density functional theory calculations, we explore the dense CH_{4}-H_{2} system. We find that pressures as low as 4.8 GPa can stabilize CH_{4}(H_{2})_{2} and (CH_{4})_{2}H_{2}, with the latter exhibiting extreme hardening of the intramolecular vibrational mode of H_{2} units within the structure. On further compression, a unique structural composition, (CH_{4})_{3}(H_{2})_{25}, emerges. This novel structure holds a vast amount of molecular hydrogen and represents the first compound to surpass 50 wt % H_{2}. These compounds, stabilized by nuclear quantum effects, persist over a broad pressure regime, exceeding 160 GPa.

8.
Nat Commun ; 12(1): 6387, 2021 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-34737292

RESUMO

Diamond and graphite are fundamental sources of carbon in the upper mantle, and their reactivity with H2-rich fluids present at these depths may represent the key to unravelling deep abiotic hydrocarbon formation. We demonstrate an unexpected high reactivity between carbons' most common allotropes, diamond and graphite, with hydrogen at conditions comparable with those in the Earth's upper mantle along subduction zone thermal gradients. Between 0.5-3 GPa and at temperatures as low as 300 °C, carbon reacts readily with H2 yielding methane (CH4), whilst at higher temperatures (500 °C and above), additional light hydrocarbons such as ethane (C2H6) emerge. These results suggest that the interaction between deep H2-rich fluids and reduced carbon minerals may be an efficient mechanism for producing abiotic hydrocarbons at the upper mantle.

9.
Sci Adv ; 7(36): eabi9507, 2021 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-34516915

RESUMO

Hydrogen bond networks play a crucial role in biomolecules and molecular materials such as ices. How these networks react to pressure directs their properties at extreme conditions. We have studied one of the simplest hydrogen bond formers, hydrogen chloride, from crystallization to metallization, covering a pressure range of more than 2.5 million atmospheres. Following hydrogen bond symmetrization, we identify a previously unknown phase by the appearance of new Raman modes and changes to x-ray diffraction patterns that contradict previous predictions. On further compression, a broad Raman band supersedes the well-defined excitations of phase V, despite retaining a crystalline chlorine substructure. We propose that this mode has its origin in proton (H+) mobility and disorder. Above 100 GPa, the optical bandgap closes linearly with extrapolated metallization at 240(10) GPa. Our findings suggest that proton dynamics can drive changes in these networks even at very high densities.

10.
J Chem Phys ; 154(17): 174702, 2021 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-34241079

RESUMO

Through a series of high-pressure x-ray diffraction experiments combined with in situ laser heating, we explore the pressure-temperature phase diagram of germanium (Ge) at pressures up to 110 GPa and temperatures exceeding 3000 K. In the pressure range of 64-90 GPa, we observe orthorhombic Ge-IV transforming above 1500 K to a previously unobserved high-temperature phase, which we denote as Ge-VIII. This high-temperature phase is characterized by a tetragonal crystal structure, space group I4/mmm. Density functional theory simulations confirm that Ge-IV becomes unstable at high temperatures and that Ge-VIII is highly competitive and dynamically stable at these conditions. The existence of Ge-VIII has profound implications for the pressure-temperature phase diagram, with melting conditions increasing to much higher temperatures than previous extrapolations would imply.

11.
J Phys Chem Lett ; 12(30): 7229-7235, 2021 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-34310154

RESUMO

Carbon disulfide is an archetypal double-bonded molecule belonging to the class of group IV-group VI, AB2 compounds. It is widely believed that, upon compression to several GPa at room temperature and above, a polymeric chain of type (-(C═S)-S-)n, named Bridgman's black polymer, will form. By combining optical spectroscopy and synchrotron X-ray diffraction data with ab initio simulations, we demonstrate that the structure of this polymer is different. Solid molecular CS2 polymerizes at ∼10-11 GPa. The polymer is disordered and consists of a mixture of 3-fold (C3) and 4-fold (C4) coordinated carbon atoms with some C═C double bonds. The C4/C3 ratio continuously increases upon further compression to 40 GPa. Upon decompression, structural changes are partially reverted, while the sample also undergoes partial disproportionation. Our work uncovers the nontrivial high-pressure structural evolution in one of the simplest molecular systems exhibiting molecular as well as polymeric phases.

12.
J Phys Chem Lett ; : 5738-5743, 2021 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-34132557

RESUMO

The chalcogens are known to react with one another to form interchalcogens, which exhibit a diverse range of bonding and conductive behavior due to the difference in electronegativity between the group members. Through a series of high-pressure diamond anvil experiments combined with density functional theory calculations, we report the synthesis of an S-Se hydride. At pressures above 4 GPa we observe the formation of a single solid composed of both H2Se and H2S molecular units. Further compression in a hydrogen medium leads to the formation of an alloyed compound (H2SxSe1-x)2H2, after which there is a sequence of pressure-induced phase transitions associated with the arrested rotation of molecules. At pressures above 50 GPa, there is a symmetrization of hydrogen bonds concomitantly with a closing band gap and increased reflectivity of the compound, indicative of a transition to a metallic state.

13.
J Phys Chem Lett ; 12(20): 4910-4916, 2021 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-34008402

RESUMO

By combining pressures up to 50 GPa and temperatures of 1200 K, we synthesize the novel barium hydride, Ba8H46, stable down to 27 GPa. We use Raman spectroscopy, X-ray diffraction, and first-principles calculations to determine that this compound adopts a highly symmetric Pm3¯n structure with an unusual 534:1 hydrogen-to-barium ratio. This singular stoichiometry corresponds to the well-defined type-I clathrate geometry. This clathrate consists of a Weaire-Phelan hydrogen structure with the barium atoms forming a topologically close-packed phase. In particular, the structure is formed by H20 and H24 clathrate cages showing substantially weakened H-H interactions. Density functional theory (DFT) demonstrates that cubic Pm3¯n Ba8H46 requires dynamical effects to stabilize the H20 and H24 clathrate cages.

14.
Phys Rev Lett ; 126(1): 015702, 2021 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-33480773

RESUMO

Mixtures of ammonia and water are major components of the "hot ice" mantle regions of icy planets. The ammonia-rich ammonia hemihydrate (AHH) plays a pivotal role as it precipitates from water-rich mixtures under pressure. It has been predicted to form ionic high-pressure structures, with fully disintegrated water molecules. Utilizing Raman spectroscopy measurements up to 123 GPa and first-principles calculations, we report the spontaneous ionization of AHH under compression. Spectroscopic measurements reveal that molecular AHH begins to transform into an ionic state at 26 GPa and then above ∼69 GPa transforms into the fully ionic P3[over ¯]m1 phase, AHH-III, characterized as ammonium oxide (NH_{4}^{+})_{2}O^{2-}.

15.
J Phys Chem C Nanomater Interfaces ; 125(13): 7511-7517, 2021 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-36158606

RESUMO

Our combined high-pressure synchrotron X-ray diffraction and Monte Carlo modeling studies show super-filling of the zeolite, and computational results suggest an occupancy by a maximum of nearly two inserted H2 molecules per framework unit, which is about twice that observed in gas hydrates. Super-filling prevents amorphization of the host material up to at least 60 GPa, which is a record pressure for zeolites and also for any group IV element being in full 4-fold coordination, except for carbon. We find that the inserted H2 forms an exotic topologically constrained glassy-like form, otherwise unattainable in pure hydrogen. Raman spectroscopy on confined H2 shows that the microporosity of the zeolite is retained over the entire investigated pressure range (up to 80 GPa) and that intermolecular interactions share common aspects with bulk hydrogen, while they are also affected by the zeolite framework.

16.
J Phys Chem Lett ; 11(15): 6420-6425, 2020 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-32658481

RESUMO

The Co-H system has been investigated through high-pressure, high-temperature X-ray diffraction experiments combined with first-principles calculations. On compression of elemental cobalt in a hydrogen medium, we observe face-centered cubic cobalt hydride (CoH) and cobalt dihydride (CoH2) above 33 GPa. Laser heating CoH2 in a hydrogen matrix at 75 GPa to temperatures in excess of ∼800 K produces cobalt trihydride (CoH3) which adopts a primitive structure. Density functional theory calculations support the stability of CoH3. This phase is predicted to be thermodynamically stable at pressures above 18 GPa and to be a superconductor below 23 K. Theory predicts that this phase remains dynamically stable upon decompression above 11 GPa where it has a maximum Tc of 30 K.

17.
J Phys Chem Lett ; 11(16): 6626-6631, 2020 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-32674573

RESUMO

Raman spectroscopy demonstrates that the rotational spectrum of solid hydrogen, and its isotope deuterium, undergoes profound transformations upon compression while still remaining in phase I. We show that these changes are associated with a loss of quantum character in the rotational modes and that the angular momentum J gradually ceases to be a good quantum rotational number. Through isotopic comparisons of the rotational Raman contributions, we reveal that hydrogen and deuterium evolve from a quantum rotor to a harmonic oscillator. We find that the mechanics behind this transformation can be well-described by a quantum-mechanical single inhibited rotor, accurately reproducing the striking spectroscopic changes observed in phase I.

18.
Proc Natl Acad Sci U S A ; 117(24): 13374-13378, 2020 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-32482874

RESUMO

Molecular hydrogen forms the archetypical quantum solid. Its quantum nature is revealed by behavior which is classically impossible and by very strong isotope effects. Isotope effects between [Formula: see text], [Formula: see text], and HD molecules come from mass difference and the different quantum exchange effects: fermionic [Formula: see text] molecules have antisymmetric wavefunctions, while bosonic [Formula: see text] molecules have symmetric wavefunctions, and HD molecules have no exchange symmetry. To investigate how the phase diagram depends on quantum-nuclear effects, we use high-pressure and low-temperature in situ Raman spectroscopy to map out the phase diagrams of [Formula: see text]-HD-[Formula: see text] with various isotope concentrations over a wide pressure-temperature (P-T) range. We find that mixtures of [Formula: see text], HD, and [Formula: see text] behave as an isotopic molecular alloy (ideal solution) and exhibit symmetry-breaking phase transitions between phases I and II and phase III. Surprisingly, all transitions occur at higher pressures for the alloys than either pure [Formula: see text] or [Formula: see text] This runs counter to any quantum effects based on isotope mass but can be explained by quantum trapping of high-kinetic energy states by the exchange interaction.

19.
Proc Natl Acad Sci U S A ; 117(16): 8736-8742, 2020 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-32245813

RESUMO

We report here the pressure-induced amorphization and reversible structural transformation between two amorphous forms of SO2: molecular amorphous and polymeric amorphous, with the transition found at 26 GPa over a broad temperature regime, 77 K to 300 K. The transformation was observed by both Raman spectroscopy and X-ray diffraction in a diamond anvil cell. The results were corroborated by ab initio molecular dynamics simulations, where both forward and reverse transitions were detected, opening a window to detailed analysis of the respective local structures. The high-pressure polymeric amorphous form was found to consist mainly of disordered polymeric chains made of three-coordinated sulfur atoms connected via oxygen atoms, with few residual intact molecules. This study provides an example of polyamorphism in a system consisting of simple molecules with multiple bonds.

20.
J Phys Chem Lett ; 11(9): 3390-3395, 2020 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-32251597

RESUMO

When compressed in a matrix of solid hydrogen, many metals form compounds with increasingly high hydrogen contents. At high density, hydrogenic sublattices can emerge, which may act as low-dimensional analogues of atomic hydrogen. We show that at high pressures and temperatures, ruthenium forms polyhydride species that exhibit intriguing hydrogen substructures with counterintuitive electronic properties. Ru3H8 is synthesized from RuH in H2 at 50 GPa and at temperatures in excess of 1000 K, adopting a cubic structure with short H-H distances. When synthesis pressures are increased above 85 GPa, we observe RuH4 which crystallizes in a remarkable structure containing corner-sharing H6 octahedra. Calculations indicate this phase is semimetallic at 100 GPa.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...