Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biomater Sci ; 12(6): 1590-1602, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38323504

RESUMO

The effects of peptide N- and C-termini on aggregation behavior have been scarcely studied. Herein, we examine (105-115) peptide fragments of transthyretin (TTR) containing various functional groups at both termini and study their impact on the morphology and the secondary structure. We synthesized TTR(105-115) peptides functionalized with α-amino (H-), N-acetyl-α-amino (Ac-) or N,N-dimethyl-α-amino (DiMe-) groups at the N-terminus, and with amide (-NH2) or carboxyl (-OH) functions at the C-terminus. We also investigated quasi-racemic mixtures by mixing the L-enantiomers with the D-enantiomer capped by H- and -NH2 groups. We observed that fibril formation is promoted by the sufficient number of hydrogen bonds at peptides' termini. Moreover, the final morphology of the aggregates can be controlled by the functional groups at the N-terminus. Remarkably, all quasi-racemic mixtures resulted in the robust formation of fibrils. Overall, this work illustrates how modifications of peptide termini may help to engineer supramolecular aggregates with a predicted morphology.


Assuntos
Amiloide , Peptídeos , Peptídeos/química , Amiloide/química , Fragmentos de Peptídeos/química , Estrutura Secundária de Proteína
2.
J Inorg Biochem ; 253: 112476, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38171045

RESUMO

The fungal cell wall and cell membrane are an important target for antifungal therapies, and a needle-like cell wall or membrane disruption may be an entirely novel antifungal mode of action. In this work, we show how the coordination of Zn(II) triggers the antifungal properties of shepherin II, a glycine- and histidine-rich antimicrobial peptide from the root of Capsella bursa-pastoris. We analyze Cu(II) and Zn(II) complexes of this peptide using experimental and theoretical methods, such as: mass spectrometry, potentiometry, UV-Vis and CD spectroscopies, AFM imaging, biological activity tests and DFT calculations in order to understand the correlation between their metal binding mode, structure, morphology and biological activity. We observe that Zn(II) coordinates to Shep II and causes a structural change, resulting in fibril formation, what has a pronounced biological consequence - a strong anticandidal activity. This phenomenon was observed neither for the peptide itself, nor for its copper(II) complex. The Zn(II) - shepherin II complex can be considered as a starting point for further anticandidal drug discovery, which is extremely important in the era of increasing antifungal drug resistance.


Assuntos
Candida albicans , Complexos de Coordenação , Candida albicans/metabolismo , Antifúngicos/química , Química Bioinorgânica , Zinco/química , Peptídeos/química , Cobre/química , Complexos de Coordenação/química
3.
Int J Biol Macromol ; 254(Pt 3): 127857, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37924913

RESUMO

In the current study, we first established that chitosan oligosaccharides (COS) have significant anti-fibrillogenic and fibril-destabilising effects on bovine insulin in vitro that proportionally expand with concentration growth. The obtained data were supported by the Thioflavin T (ThT) assay, circular dichroism (CD), attenuated total reflectance Fourier-transform infrared (ATR-FTIR) spectroscopy, and atomic force microscopy (AFM). Interestingly, coincubation of insulin with COS in the ratio of 1 to 10 over 48 h at 37 °C leads to full prevention of insulin aggregation, and in the case of preformed fibrils, results in their destabilisation and disaggregation. Moreover, both a cationic polymer of allylamine (PAH) and a sulphated oligosaccharide (CROS) prepared from carrageenan had no inhibitory effect on insulin amyloid formation. Thus, we proposed that COS modulates insulin amyloid formation due to the presence of linear sugar units, the degree of polymerization, and the free amino group providing a positive charge. These findings highlight the potential implications of COS as a promising substance for the treatment of insulin-dependent diabetes mellitus and localised insulin-derived amyloidosis and, moreover, provide a new insight into the mechanism of the anti-diabetic and antitoxic properties of chitosan and chitosan-based agents.


Assuntos
Amiloidose , Quitosana , Animais , Bovinos , Insulina/química , Quitosana/farmacologia , Quitosana/química , Amiloide/química , Proteínas Amiloidogênicas , Oligossacarídeos/farmacologia , Oligossacarídeos/química
4.
ACS Appl Bio Mater ; 6(12): 5676-5684, 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-38060806

RESUMO

Investigation of amyloids with the aid of fluorescence microscopy provides crucial insights into the development of numerous diseases associated with the formation of aggregates. Here, we present a series of BF2-functionalized benzothiazoles with electron-donating methoxy group(s), which are tested as amyloid fluorescent markers. We evaluate how the position of donor functional group(s) influences optical properties (fluorescence lifetime (τ) and fluorescence quantum yield (FQY)) in a solution and upon binding to amyloids. We elucidate the importance of surrounding environmental factors (hydrogen-bonding network, polarity, and viscosity) on the observed changes in FQY and evaluate how the localization of a donor influences radiative and nonradiative decay pathways. We conclude that a donor attached to the benzothiazole ring contributes to the increment of radiative decay pathways upon binding to amyloids (kr), while the donor attached to the flexible part of a molecule (with rotational freedom) contributes to a decrease in nonradiative decay pathways (knr). We find that the donor-acceptor-donor architecture allows us to obtain 58 times higher FQY of the dye upon binding to bovine insulin amyloids. Finally, we measure two-photon absorption (2PA) cross sections (σ2) of the dyes and their change upon binding by the two-photon excited fluorescence (2PEF) technique. Measurements reveal that dyes that exhibit the increase/decrease of σ2 values when transferred from highly polar solvents to CHCl3 present a similar behavior upon amyloid binding. Our 2PA experimental values are supported by quantum mechanics/molecular mechanics (QM/MM) simulations. Despite this trend, the values of σ2 are not the same, which points out the importance of two-photon absorption measurements of amyloid-dye complexes in order to understand the performance of 2P probes upon binding.


Assuntos
Benzotiazóis , Corantes Fluorescentes , Animais , Bovinos , Corantes Fluorescentes/química , Amiloide , Microscopia de Fluorescência/métodos
5.
Inorg Chem ; 62(48): 19786-19794, 2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-37983127

RESUMO

Shepherin I is a glycine- and histidine-rich antimicrobial peptide from the root of a shepherd's purse, whose antimicrobial activity was suggested to be enhanced by the presence of Zn(II) ions. We describe Zn(II) and Cu(II) complexes of this peptide, aiming to understand the correlation between their metal binding mode, structure, morphology, and biological activity. We observe a logical sequence of phenomena, each of which is the result of the previous one: (i) Zn(II) coordinates to shepherin I, (ii) causes a structural change, which, in turn, (iii) results in fibril formation. Eventually, this chain of structural changes has a (iv) biological consequence: The shepherin I-Zn(II) fibrils are highly antifungal. What is of particular interest, both fibril formation and strong anticandidal activity are only observed for the shepherin I-Zn(II) complex, linking its structural rearrangement that occurs after metal binding with its morphology and biological activity.


Assuntos
Capsella , Antifúngicos/farmacologia , Peptídeos Antimicrobianos , Peptídeos , Zinco/farmacologia
6.
J Phys Chem Lett ; 13(21): 4673-4681, 2022 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-35605187

RESUMO

Autofluorescence properties of amyloid fibrils are of much interest but, to date, the attention has been given mostly to one-photon excited fluorescence (1PEF), while the two-photon excited fluorescence (2PEF) properties of amyloids are much less explored. We investigate 1PEF and 2PEF of hen egg-white lysozyme (HEWL) in the form of monomers and fibrils. HEWL monomers feature some autofluorescence, which is enhanced in the case of fibrils. Moreover, by varying NaCl content, we introduce changes to fibrils morphology and show how the increase of the salt concentration is linked with an increase of 1PEF and 2PEF intensities. Interestingly, we observe 2PEF emission red-shifted in comparison to 1PEF. We confirm the presence of different relaxation pathways upon one- or two-photon excitation by different lifetimes of the fluorescence decays. Finally, we correlate the changes in optical properties of HEWL fibrils and monomers with salt-mediated changes in their morphology and the secondary structure.


Assuntos
Amiloide , Muramidase , Amiloide/química , Animais , Galinhas/metabolismo , Fluorescência , Muramidase/química , Fótons , Estrutura Secundária de Proteína
7.
J Phys Chem B ; 125(21): 5502-5510, 2021 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-34008978

RESUMO

Amyloid fibrils are peptide or protein aggregates possessing a cross-ß-sheet structure. They possess intrinsic fluorescence property, which is still not fully understood. Herein, we compare structural and optical properties of fibrils formed from L- and D-enantiomers of the (105-115) fragment of transthyretin (TTR) and from their racemic mixture. Our results show that autofluorescence of fibrils obtained from enantiomers differs from that of fibrils from the racemic mixture. In order to elucidate the origin of observed differences, we analyzed the structure and morphology of fibrils and showed how variations in ß-sheet organization influence optical properties of fibrils. We clarified the contribution of aromatic rings and the amyloid backbone to the final blue-green emission of fibrils. This work demonstrates how enantiomeric composition of amino acids allows us to modulate the self-assembly and final morphology of well-defined fibrillar bionanostructures with optical properties controlled by supramolecular organization.


Assuntos
Amiloide , Peptídeos , Sequência de Aminoácidos , Conformação Proteica em Folha beta , Estereoisomerismo
8.
J Phys Chem Lett ; 12(5): 1432-1437, 2021 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-33522819

RESUMO

Amyloids are broadly investigated protein misfolding products with characteristic ß-sheet assemblies that have an important role in neurodegenerative diseases (e.g., Alzheimer's disease). While they are usually visualized by staining with Thioflavin-T, Congo Red, or other fluorescent markers, it still arouses a controversy over possible staining molecule influence on the amyloid structure or aggregation process. In this work we present, for the first time, the polarization analysis of two-photon excited autofluorescence of amyloids and confirm that polarization dependence of the observed emission can be correlated with the orientation of fibrils. We show the potential of two-photon excited autofluorescence for resolution of molecular organization of fibrils within amyloid superstructures. This label-free method is compatible with two-photon imaging already applied in investigation of neurodegeneration model in mice.


Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/química , Peptídeos beta-Amiloides/metabolismo , Corantes Fluorescentes/química , Polarização de Fluorescência , Humanos , Cinética , Microscopia de Fluorescência por Excitação Multifotônica/métodos , Imagem Óptica , Conformação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA