Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Death Discov ; 10(1): 48, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38272861

RESUMO

Glaucoma is a multifactorial neurodegenerative disease characterized by the progressive and irreversible degeneration of the optic nerve and retinal ganglion cells. Despite medical advances aiming at slowing degeneration, around 40% of treated glaucomatous patients will undergo vision loss. It is thus of utmost importance to have a better understanding of the disease and to investigate more deeply its early causes. The transcriptional coactivator YAP, an important regulator of eye homeostasis, has recently drawn attention in the glaucoma research field. Here we show that Yap conditional knockout mice (Yap cKO), in which the deletion of Yap is induced in both Müller glia (i.e. the only retinal YAP-expressing cells) and the non-pigmented epithelial cells of the ciliary body, exhibit a breakdown of the aqueous-blood barrier, accompanied by a progressive collapse of the ciliary body. A similar phenotype is observed in human samples that we obtained from patients presenting with uveitis. In addition, aged Yap cKO mice harbor glaucoma-like features, including deregulation of key homeostatic Müller-derived proteins, retinal vascular defects, optic nerve degeneration and retinal ganglion cell death. Finally, transcriptomic analysis of Yap cKO retinas pointed to early-deregulated genes involved in extracellular matrix organization potentially underlying the onset and/or progression of the observed phenotype. Together, our findings reveal the essential role of YAP in preserving the integrity of the ciliary body and retinal ganglion cells, thereby preventing the onset of uveitic glaucoma-like features.

2.
Biomater Adv ; 155: 213681, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37944448

RESUMO

Human adenoviruses represent attractive candidates for the design of cancer gene therapy vectors. Modification of adenovirus tropism by incorporating a targeting ligand into the adenovirus capsid proteins allows retargeting of adenovirus towards the cells of interest. Human adenovirus type 5 (HAdV-C5) bearing NGR containing peptide (CNGRCVSGCAGRC) inserted into the fiber (AdFNGR) or the hexon (AdHNGR) protein demonstrated an increased transduction of endothelial cells showing expression of aminopeptidase N, also known as CD13, and αvß3 integrin both present on tumor vasculature, indicating that NGR-bearing adenoviruses could be used as tools for anti-angiogenic cancer therapy. Here we investigated how AdFNGR and AdHNGR infect cells lacking HAdV-C5 primary receptor, coxsackie and adenovirus receptor, and we showed that both AFNGR and AdHNGR enter cells by dynamin- and lipid raft-mediated endocytosis, while clathrin is not required for endocytosis of these viruses. We present evidence that productive infection of both AdFNGR and AdHNGR involves lipid rafts, with usage of flotillin-mediated cell entry for AdFNGR and limited role of caveolin in AdHNGR transduction efficiency. Lipid rafts play important role in angiogenesis and process of metastasis. Therefore, the ability of AdFNGR and AdHNGR to use lipid raft-dependent endocytosis, involving respectively flotillin- or caveolin-mediated pathway, could give them an advantage in targeting tumor cells lacking HAdV-C5 primary receptor.


Assuntos
Adenovírus Humanos , Humanos , Adenovírus Humanos/genética , Adenovírus Humanos/metabolismo , Linhagem Celular , Células Endoteliais/metabolismo , Caveolina 1/genética , Caveolina 1/metabolismo , Adenoviridae/genética , Adenoviridae/metabolismo
3.
Cell Death Dis ; 11(8): 631, 2020 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-32801350

RESUMO

Hippo signalling regulates eye growth during embryogenesis through its effectors YAP and TAZ. Taking advantage of a Yap heterozygous mouse line, we here sought to examine its function in adult neural retina, where YAP expression is restricted to Müller glia. We first discovered an unexpected temporal dynamic of gene compensation. At postnatal stages, Taz upregulation occurs, leading to a gain of function-like phenotype characterised by EGFR signalling potentiation and delayed cell-cycle exit of retinal progenitors. In contrast, Yap+/- adult retinas no longer exhibit TAZ-dependent dosage compensation. In this context, Yap haploinsufficiency in aged individuals results in Müller glia dysfunction, late-onset cone degeneration, and reduced cone-mediated visual response. Alteration of glial homeostasis and altered patterns of cone opsins were also observed in Müller cell-specific conditional Yap-knockout aged mice. Together, this study highlights a novel YAP function in Müller cells for the maintenance of retinal tissue homeostasis and the preservation of cone integrity. It also suggests that YAP haploinsufficiency should be considered and explored as a cause of cone dystrophies in human.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas de Ciclo Celular/metabolismo , Distrofia de Cones/patologia , Células Ependimogliais/metabolismo , Células Ependimogliais/patologia , Haploinsuficiência/genética , Animais , Animais Recém-Nascidos , Proteínas de Transporte/metabolismo , Ciclo Celular , Proliferação de Células , Distrofia de Cones/genética , Receptores ErbB/metabolismo , Deleção de Genes , Regulação da Expressão Gênica , Homeostase , Camundongos Knockout , Modelos Biológicos , Opsinas/metabolismo , Fenótipo , Retina/patologia , Células Fotorreceptoras Retinianas Cones/metabolismo , Células Fotorreceptoras Retinianas Cones/patologia , Degeneração Retiniana/genética , Degeneração Retiniana/patologia , Células-Tronco/metabolismo , Transativadores/metabolismo , Proteínas de Sinalização YAP
4.
Oncotarget ; 8(57): 97344-97360, 2017 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-29228615

RESUMO

The anti-tumor potential of oncolytic adenoviruses (CRAds) has been demonstrated in preclinical and clinical studies. While these agents failed to eradicate tumors when used as a monotherapy, they may be more effective if combined with conventional treatments such as radiotherapy or chemotherapy. This study seeks to evaluate the combination of a CRAd bearing a ∆24 deletion in E1A with valproic acid (VPA), a histone deacetylase inhibitor, for the treatment of human colon carcinomas. This combination led to a strong inhibition of cell growth both in vitro and in vivo compared to treatment with CRAd or VPA alone. This effect did not stem from a better CRAd replication and production in the presence of VPA. Inhibition of cell proliferation and cell death were induced by the combined treatment. Moreover, whereas cells treated only with CRAd displayed a polyploidy (> 4N population), this phenotype was increased in cells treated with both CRAd and VPA. In addition, the increase in polyploidy triggered by combined treatment with CRAd and VPA was associated with the enhancement of H2AX phosphorylation (γH2AX), a hallmark of DNA damage, but also with a decrease of several DNA repair proteins. Finally, viral replication (or E1A expression) was shown to play a key role in the observed effects since no enhancement of polyploidy nor increase in γH2AX were found following cell treatment with a replication-deficient Ad and VPA. Taken together, our results suggest that CRAd and VPA could be used in combination for the treatment of colon carcinomas.

5.
Eur J Med Chem ; 78: 236-47, 2014 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-24686010

RESUMO

Vesicular Glutamate Transporters (VGLUTs) allow the loading of presynapic glutamate vesicles and thus play a critical role in glutamatergic synaptic transmission. VGLUTs have proved to be involved in several major neuropathologies and directly correlated to clinical dementia in Alzheimer and Parkinson's disease. Accordingly VGLUT represent a key biological target or biomarker for neuropathology treatment or diagnostic. Yet, despite the pivotal role of VGLUTs, their pharmacology appears quite limited. Known competitive inhibitors are restricted to some dyes as Trypan Blue (TB) and glutamate mimics. This lack of pharmacological tools has heavily hampered VGLUT investigations. Here we report a rapid access to small molecules that combine benefits of TB and dicarboxylic quinolines (DCQs). Their ability to block vesicular glutamate uptake was evaluated. Several compounds displayed low micromolar inhibitory potency when size related compounds are thirty to forty times less potent (i.e. DCQ). We then confirmed the VGLUT selectivity by measuring the effect of the series on vesicular monoamine transport and on metabotropic glutamate receptor activity. These inhibitors are synthesized in only two steps and count among the best pharmacological tools for VGLUTs studies.


Assuntos
Compostos Azo/farmacologia , Corantes/farmacologia , Desenho de Fármacos , Proteínas Vesiculares de Transporte de Glutamato/antagonistas & inibidores , Animais , Compostos Azo/síntese química , Compostos Azo/química , Corantes/síntese química , Corantes/química , Relação Dose-Resposta a Droga , Estrutura Molecular , Ratos , Relação Estrutura-Atividade
6.
Mol Cancer ; 10: 105, 2011 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-21884581

RESUMO

Tumor cells can escape the immune system by overexpressing molecules of the B7 family, e.g. B7-H1 (PD-L1 or CD86), which suppresses the anti-tumor T-cell responses through binding to the PD-1 receptor, and similarly for B7.1 (CD80), through binding to CTLA-4. Moreover, direct interactions between B7-H1 and B7.1 molecules are also likely to participate in the immunoevasion mechanism. In this study, we used a mouse model of tumor dormancy, DA1-3b leukemia cells. We previously showed that a minor population of DA1-3b cells persists in equilibrium with the immune system for long periods of time, and that the levels of surface expression of B7-H1 and B7.1 molecules correlates with the dormancy time. We found that leukemia cells DA1-3b/d365 cells, which derived from long-term dormant tumors and overexpressed B7-H1 and B7.1 molecules, were highly permissive to Ad5FB4, a human adenovirus serotype 5 (Ad5) vector pseudotyped with chimeric human-bovine fibers. Both B7-H1 and B7.1 were required for Ad5FB4-cell binding and entry, since (i) siRNA silencing of one or the other B7 gene transcript resulted in a net decrease in the cell binding and Ad5FB4-mediated transduction of DA1-3b/d365; and (ii) plasmid-directed expression of B7.1 and B7-H1 proteins conferred to Ad5FB4-refractory human cells a full permissiveness to this vector. Binding data and flow cytometry analysis suggested that B7.1 and B7-H1 molecules played different roles in Ad5FB4-mediated transduction of DA1-3b/d365, with B7.1 involved in cell attachment of Ad5FB4, and B7-H1 in Ad5FB4 internalization. BRET analysis showed that B7.1 and B7-H1 formed heterodimeric complexes at the cell surface, and that Ad5FB4 penton, the viral capsomere carrying the fiber projection, could negatively interfere with the formation of B7.1/B7-H1 heterodimers, or modify their conformation. As interactors of B7-H1/B7.1 molecules, Ad5FB4 particles and/or their penton capsomeres represent potential therapeutic agents targeting cancer cells that had developed immunoevasion mechanisms.


Assuntos
Adenoviridae/genética , Antígeno B7-1/metabolismo , Antígeno B7-H1/metabolismo , Evasão Tumoral , Animais , Antígeno B7-1/genética , Antígeno B7-H1/genética , Proteínas do Capsídeo/metabolismo , Linhagem Celular Tumoral , Técnicas de Silenciamento de Genes , Técnicas de Transferência de Genes , Vetores Genéticos , Humanos , Leucemia , Camundongos , Ligação Proteica , Multimerização Proteica , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Ressonância de Plasmônio de Superfície , Proteínas da Cauda Viral/metabolismo , Ligação Viral , Internalização do Vírus
7.
Mol Ther ; 15(11): 1963-72, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17712334

RESUMO

Most adenoviral vectors (HAdvs) elaborated for gene therapy are derived from serotype 5 viruses that use clathrin-coated vesicle endocytosis for cell entry. However, it appears that adenoviral vectors are able to take advantage of lipid raft/caveolae endocytosis to infect cells. In vivo targeting of a therapeutic gene to specific cells by vector engineering has become a major focus of gene therapy research. Yet, modification of adenoviral tropism, especially fiber gene engineering, can induce deficient intracellular trafficking of the viral particle, with a shift in subcellular localization resulting in extensive exocytosis. In this study we demonstrate that uptake of a fiber-modified adenovirus using lipid raft/caveolae endocytosis leads to non-altered intracellular trafficking without endosomal retention. Moreover, activation of lipid raft structures by this vector leads to the formation of "mega-caveosomes". These results demonstrate that, by forcing adenoviruses to take advantage of a non-clathrin, non-classical endocytic pathway, it is possible to compensate for the deficiency in endosomolysis that is associated with the use of some of the fiber-modified adenoviral constructs. Moreover, it renders such vectors ideal candidates for infecting human coxsackie and adenoviruses receptor (hCAR) negative cells.


Assuntos
Adenoviridae/metabolismo , Cavéolas/metabolismo , Endocitose , Adenoviridae/genética , Animais , Transporte Biológico , Linhagem Celular , Clatrina/metabolismo , Cricetinae , Cricetulus , Expressão Gênica , Humanos , Cinética , Microscopia Imunoeletrônica , Vírion/metabolismo , Vírion/ultraestrutura
8.
Mol Ther ; 14(2): 293-304, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16735140

RESUMO

Gene transfer by adenoviruses, which are widely used for gene therapy, may provide an alternative approach to treatment of several hematopoietic malignancies. However, a major limitation of adenovirus 5-based gene therapy lies in the natural tropism of the virus for the widely expressed hCAR receptor. The efficacy of adenoviral vectors could be improved if viral vectors that exhibit tissue-specific gene delivery were developed. For efficient gene transfer it is essential that every step from binding of virus to target cells to transgene expression is successfully accomplished. We developed a specific vector targeting the CD21 receptor, by inserting a CD21 binding sequence, derived from the EBV GP350/220 protein, into the HI loop of the HAdV5 fiber protein. This vector, HAdV5-CD21HIloop, binds specifically to CD21-positive cells and results in enhanced expression of the transgene in these cells and reduced expression in CD21-negative cells. Viral infection is highly correlated with the presence of CD21 receptors. Taken together, these results demonstrate that HAdV5-CD21HIloop is able to transduce CD21-positive cells specifically with reduced infection of nontarget cells. This is the result of the maintenance of the intracellular trafficking of the genetically modified adenovirus without vesicular retention, leading to enhanced nuclear transfer.


Assuntos
Adenoviridae/genética , Linfócitos B , Técnicas de Transferência de Genes , Vetores Genéticos , Receptores de Complemento 3d/genética , Linfócitos B/virologia , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Linhagem Celular Tumoral , Endocitose , Humanos , Receptores de Complemento 3d/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...