Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microbiol Spectr ; 12(4): e0332723, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38412527

RESUMO

Tigecycline is an antibiotic of last resort for infections with carbapenem-resistant Acinetobacter baumannii. Plasmids harboring variants of the tetracycline destructase gene tetX promote rising tigecycline resistance rates. We report the earliest observation of tet(X3) in a clinical strain predating tigecycline's commercialization, suggesting selective pressures other than tigecycline contributed to its emergence. IMPORTANCE: We present the earliest observation of a tet(X3)-positive bacterial strain, predating by many years the earliest reports of this gene so far. This finding is significant as tigecycline is an antibiotic of last resort for carbapenem-resistant Acinetobacter baumannii (CRAB), which the World Health Organization ranks as one of its top three critical priority pathogens, and tet(X3) variants have become the most prevalent genes responsible for enabling CRAB to become tigecycline resistant. Moreover, the tet(X3)-positive strain we report is the first and only to be found that predates the commercialization of tigecycline, an antibiotic that was thought to have contributed to the emergence of this resistance gene. Understanding the factors contributing to the origin and spread of novel antibiotic resistance genes is crucial to addressing the major global public health issue, which is antimicrobial resistance.


Assuntos
Antibacterianos , Tetraciclina , Tigeciclina/farmacologia , Testes de Sensibilidade Microbiana , Antibacterianos/farmacologia , Tetraciclina/farmacologia , Plasmídeos , Carbapenêmicos
2.
Microorganisms ; 12(2)2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38399753

RESUMO

(1) Background: Infections with pan-drug-resistant (PDR) bacteria, such as A. baumannii, are becoming increasingly common, especially in healthcare facilities. In this study, we selected 15 colistin-resistant clinical A. baumannii isolates from a hospital in Beirut, Lebanon, to test combination therapies and determine their sequence types (STs) and the mechanism of colistin resistance using whole-genome sequencing (WGS). (2) Methods: Antimicrobial susceptibility testing via broth microdilution against 12 antimicrobials from different classes and growth rate assays were performed. A checkerboard assay was conducted on PDR isolates using six different antimicrobials, each in combination with colistin. Genomic DNA was extracted from all isolates and subjected to WGS. (3) Results: All isolates were resistant to all tested antimicrobials with the one exception that was susceptible to gentamicin. Combining colistin with either meropenem, ceftolozane-tazobactam, or teicoplanin showed synergistic activity. Sequencing data revealed that 67% of the isolates belonged to Pasteur ST2 and 33% to ST187. Furthermore, these isolates harbored a number of resistance genes, including blaOXA-23. Mutations in the pmrC gene were behind colistin resistance. (4) Conclusions: With the rise in antimicrobial resistance and the absence of novel antimicrobial production, alternative treatments must be found. The combination therapy results from this study suggest treatment options for PDR ST2 A. baumannii-infected patients.

3.
mSystems ; 9(2): e0084323, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38206029

RESUMO

Root-associated microorganisms play an important role in plant health, such as plant growth-promoting rhizobacteria (PGPR) from the Bacillus and Pseudomonas genera. Although bacterial consortia including these two genera would represent a promising avenue to efficient biofertilizer formulation, we observed that Bacillus subtilis root colonization is decreased by the presence of Pseudomonas fluorescens and Pseudomonas protegens. To determine if B. subtilis can adapt to the inhibitory effect of Pseudomonas on roots, we conducted adaptative laboratory evolution experiments with B. subtilis in mono-association or co-cultured with P. fluorescens on tomato plant roots. Evolved isolates with various colony morphology and stronger colonization capacity of both tomato plant and Arabidopsis thaliana roots emerged rapidly from the two evolution experiments. Certain evolved isolates also had better fitness on the root in the presence of other Pseudomonas species. In all independent lineages, whole-genome resequencing revealed non-synonymous mutations in genes ywcC or sinR encoding regulators involved in repressing biofilm development, suggesting their involvement in enhanced root colonization. These findings provide insights into the molecular mechanisms underlying B. subtilis adaptation to root colonization and highlight the potential of directed evolution to enhance the beneficial traits of PGPR.IMPORTANCEIn this study, we aimed to enhance the abilities of the plant-beneficial bacterium Bacillus subtilis to colonize plant roots in the presence of competing Pseudomonas bacteria. To achieve this, we conducted adaptive laboratory experiments, allowing Bacillus to evolve in a defined environment. We successfully obtained strains of Bacillus that were more effective at colonizing plant roots than the ancestor strain. To identify the genetic changes driving this improvement, we sequenced the genomes of these evolved strains. Interestingly, mutations that facilitated the formation of robust biofilms on roots were predominant. Many of these evolved Bacillus isolates also displayed the remarkable ability to outcompete Pseudomonas species. Our research sheds light on the mutational paths selected in Bacillus subtilis to thrive in root environments and offers exciting prospects for improving beneficial traits in plant growth-promoting microorganisms. Ultimately, this could pave the way for the development of more effective biofertilizers and sustainable agricultural practices.


Assuntos
Arabidopsis , Bacillus , Pseudomonas fluorescens , Bacillus subtilis/genética , Biofilmes , Arabidopsis/genética
4.
Microbiol Resour Announc ; 12(11): e0066523, 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37843363

RESUMO

We report the complete genome sequence and annotation of Escherichia coli DGF-298, a genome-reduced E. coli strain with interesting properties for systems and synthetic biology. DGF-298 has a single circular chromosome of 2,991,126 bp and 2,831 genes, including 2,691 coding sequences, with a mean G + C content of ~51%.

5.
PLoS One ; 18(4): e0283990, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37040373

RESUMO

Transposon-insertion sequencing (TIS) methods couple high density transposon mutagenesis with next-generation sequencing and are commonly used to identify essential or important genes in bacteria. However, this approach can be work-intensive and sometimes expensive depending on the selected protocol. The difficulty to process a high number of samples in parallel using standard TIS protocols often restricts the number of replicates that can be performed and limits the deployment of this technique to large-scale projects studying gene essentiality in various strains or growth conditions. Here, we report the development of a robust and inexpensive High-Throughput Transposon Mutagenesis (HTTM) protocol and validate the method using Escherichia coli strain BW25113, the parental strain of the KEIO collection. HTTM reliably provides high insertion densities with an average of one transposon every ≤20bp along with impressive reproducibility (Spearman correlation coefficients >0.94). A detailed protocol is available at protocol.io and a graphical version is also included with this article.


Assuntos
Elementos de DNA Transponíveis , Sequenciamento de Nucleotídeos em Larga Escala , Reprodutibilidade dos Testes , Mutagênese , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Pesquisa , Escherichia coli/genética
6.
Microbiol Spectr ; 10(2): e0230321, 2022 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-35293798

RESUMO

Type IV pili (T4P) are common bacterial surface appendages involved in different biological processes such as adherence, motility, competence, pathogenesis, and conjugation. In this work, we describe the T4P of TP114, an IncI2 enterobacterial conjugative plasmid recently shown to disseminate at high rates in the mouse intestinal tract. This pilus is composed of the major PilS and minor PilV pilins that are both important for conjugation in broth and in the gut microbiota but not on a solid support. The PilV-coding sequence is part of a shufflon and can bear different C-terminal domains. The shufflon is a multiple DNA inversion system containing many DNA cassettes flanked by recombination sites that are recognized by a shufflon-specific tyrosine recombinase (shufflase) promoting the recombination between DNA segments. The different PilV variants act as adhesins that can modify the affinity for different recipient bacteria. Eight PilV variants were identified in TP114, including one that has not been described in other shufflons. All PilV variants allowed conjugative transfer with different recipient Escherichia coli strains. We conclude that the T4P carried by TP114 plays a major role in mating pair stabilization in broth as well as in the gut microbiota and that the shufflon acts as a biological switch modifying the conjugative host range specificity. IMPORTANCE Conjugative plasmids are involved in horizontal gene transfer in the gut microbiota, which constitutes an important antibiotic resistance gene reservoir. However, the molecular mechanisms used by conjugative plasmids to select recipient bacteria and transfer at high rates in the mouse gut microbiota remain poorly characterized. We studied the type IV pilus carried by TP114 and demonstrated that the minor pilin PilV acts as an adhesin that can efficiently select target cells for conjugative transfer. Moreover, the pilV gene can be rapidly modified by a shufflon, hence modulating the nature of the recipient bacteria during conjugation. Our study highlights the role of mating pair stabilization for conjugation in broth as well as in the gut microbiome and explains how the host spectrum of a plasmid can be expanded simply by remodeling the PilV adhesin.


Assuntos
Microbioma Gastrointestinal , Adesinas Bacterianas/genética , Animais , Bactérias/genética , Conjugação Genética , DNA , Escherichia coli/genética , Fímbrias Bacterianas/genética , Microbioma Gastrointestinal/genética , Transferência Genética Horizontal , Camundongos , Plasmídeos/genética
7.
mBio ; 13(1): e0320921, 2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35089067

RESUMO

The emergence of the plasmid-borne colistin resistance gene mcr-1 threatens public health. IncX4-type plasmids are one of the most epidemiologically successful vehicles for spreading mcr-1 worldwide. Since MCR-1 is known for imposing a fitness cost to its host bacterium, the successful spread of mcr-1-bearing plasmids might be linked to high conjugation frequency, which would enhance the maintenance of the plasmid in the host without antibiotic selection. However, the mechanism of IncX4 plasmid conjugation remains unclear. In this study, we used high-density transposon mutagenesis to identify factors required for IncX4 plasmid transfer. Eighteen essential transfer genes were identified, including five with annotations unrelated to conjugation. Cappable-seq, transcriptome sequencing (RNA-seq), electrophoretic mobility shift assay, and ß-galactosidase assay confirmed that a novel transcriptional regulator gene, pixR, directly regulates the transfer of IncX4 plasmids by binding the promoter of 13 essential transfer genes to increase their transcription. PixR is not active under nonmating conditions, while the expression of the pixR, pilX3-4, and pilX11 genes increased 3- to 6-fold upon contact with recipient Escherichia coli C600. Plasmid invasion and coculture competition assays revealed the essentiality of pixR for spreading and persistence of mcr-1-bearing IncX4 plasmids in bacterial populations. Effective conjugation is crucial for alleviating the fitness cost exerted by mcr-1 carriage. The existence of the IncX4-specific pixR gene increases plasmid transmissibility while promoting the invasion and persistence of mcr-1-bearing plasmids in bacterial populations, which helps explain their global prevalence. IMPORTANCE The spread of clinically relevant antibiotic resistance genes is often linked to the dissemination of epidemic plasmids. However, the underlying molecular mechanisms contributing to the successful spread of epidemic plasmids remain unclear. In this report, we shine a light on the transfer activation of IncX4 plasmids. We show how conjugation promotes the invasion and persistence of IncX4 plasmids within a bacterial population. The dissection of the regulatory network of conjugation helps explain the rapid spread of epidemic plasmids in nature. It also reveals potential targets for the development of conjugation inhibitors.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Farmacorresistência Bacteriana/genética , Antibacterianos/farmacologia , Colistina/farmacologia , Plasmídeos , Testes de Sensibilidade Microbiana
8.
Mol Syst Biol ; 17(10): e10335, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34665940

RESUMO

Antibiotic resistance threatens our ability to treat infectious diseases, spurring interest in alternative antimicrobial technologies. The use of bacterial conjugation to deliver CRISPR-cas systems programmed to precisely eliminate antibiotic-resistant bacteria represents a promising approach but requires high in situ DNA transfer rates. We have optimized the transfer efficiency of conjugative plasmid TP114 using accelerated laboratory evolution. We hence generated a potent conjugative delivery vehicle for CRISPR-cas9 that can eliminate > 99.9% of targeted antibiotic-resistant Escherichia coli in the mouse gut microbiota using a single dose. We then applied this system to a Citrobacter rodentium infection model, achieving full clearance within four consecutive days of treatment.


Assuntos
Microbiota , Probióticos , Animais , Sistemas CRISPR-Cas/genética , Conjugação Genética , Edição de Genes , Camundongos
9.
Nucleic Acids Res ; 49(D1): D380-D388, 2021 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-33179748

RESUMO

OpenProt (www.openprot.org) is the first proteogenomic resource supporting a polycistronic annotation model for eukaryotic genomes. It provides a deeper annotation of open reading frames (ORFs) while mining experimental data for supporting evidence using cutting-edge algorithms. This update presents the major improvements since the initial release of OpenProt. All species support recent NCBI RefSeq and Ensembl annotations, with changes in annotations being reported in OpenProt. Using the 131 ribosome profiling datasets re-analysed by OpenProt to date, non-AUG initiation starts are reported alongside a confidence score of the initiating codon. From the 177 mass spectrometry datasets re-analysed by OpenProt to date, the unicity of the detected peptides is controlled at each implementation. Furthermore, to guide the users, detectability statistics and protein relationships (isoforms) are now reported for each protein. Finally, to foster access to deeper ORF annotation independently of one's bioinformatics skills or computational resources, OpenProt now offers a data analysis platform. Users can submit their dataset for analysis and receive the results from the analysis by OpenProt. All data on OpenProt are freely available and downloadable for each species, the release-based format ensuring a continuous access to the data. Thus, OpenProt enables a more comprehensive annotation of eukaryotic genomes and fosters functional proteomic discoveries.


Assuntos
Bases de Dados de Proteínas , Eucariotos/genética , Genoma , Anotação de Sequência Molecular , Fases de Leitura Aberta/genética , Espectrometria de Massas , Isoformas de Proteínas/genética , Proteogenômica , Ribossomos/metabolismo , Interface Usuário-Computador
10.
Mol Syst Biol ; 16(12): e9844, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33331123

RESUMO

The near-minimal bacterium Mesoplasma florum is an interesting model for synthetic genomics and systems biology due to its small genome (~ 800 kb), fast growth rate, and lack of pathogenic potential. However, fundamental aspects of its biology remain largely unexplored. Here, we report a broad yet remarkably detailed characterization of M. florum by combining a wide variety of experimental approaches. We investigated several physical and physiological parameters of this bacterium, including cell size, growth kinetics, and biomass composition of the cell. We also performed the first genome-wide analysis of its transcriptome and proteome, notably revealing a conserved promoter motif, the organization of transcription units, and the transcription and protein expression levels of all protein-coding sequences. We converted gene transcription and expression levels into absolute molecular abundances using biomass quantification results, generating an unprecedented view of the M. florum cellular composition and functions. These characterization efforts provide a strong experimental foundation for the development of a genome-scale model for M. florum and will guide future genome engineering endeavors in this simple organism.


Assuntos
Entomoplasmataceae/fisiologia , Sequência de Bases , Biomassa , Entomoplasmataceae/genética , Entomoplasmataceae/crescimento & desenvolvimento , Entomoplasmataceae/ultraestrutura , Regulação Bacteriana da Expressão Gênica , Genoma Bacteriano , Espaço Intracelular/metabolismo , Cinética , Substâncias Macromoleculares/metabolismo , Ácidos Nucleicos/metabolismo , Fases de Leitura Aberta/genética , Regiões Promotoras Genéticas/genética , Ribossomos/metabolismo , Temperatura , Sítio de Iniciação de Transcrição , Transcrição Gênica
11.
Commun Biol ; 3(1): 523, 2020 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-32963323

RESUMO

The gut microbiota is a suspected hotspot for bacterial conjugation due to its high density and diversity of microorganisms. However, the contribution of different conjugative plasmid families to horizontal gene transfer in this environment remains poorly characterized. Here, we systematically quantified the transfer rates in the mouse intestinal tract for 13 conjugative plasmids encompassing 10 major incompatibility groups. The vast majority of these plasmids were unable to perform conjugation in situ or only reached relatively low transfer rates. Surprisingly, IncI2 conjugative plasmid TP114 was identified as a proficient DNA delivery system in this environment, with the ability to transfer to virtually 100% of the probed recipient bacteria. We also show that a type IV pilus present in I-complex conjugative plasmids plays a crucial role for the transfer of TP114 in the mouse intestinal microbiota, most likely by contributing to mating pair stabilization. These results provide new insights on the mobility of genes in the gut microbiota and highlights TP114 as a very efficient DNA delivery system of interest for microbiome editing tools.


Assuntos
Conjugação Genética/genética , Microbioma Gastrointestinal/genética , Transferência Genética Horizontal/genética , Plasmídeos/genética , Animais , Elementos de DNA Transponíveis/genética , DNA Bacteriano/genética , Enterobacteriaceae/genética , Escherichia coli/genética , Feminino , Biblioteca Gênica , Genes Bacterianos/genética , Camundongos , Camundongos Endogâmicos C57BL
12.
Nucleic Acids Res ; 48(16): 8815-8827, 2020 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-32556263

RESUMO

Bacteria have evolved defence mechanisms against bacteriophages. Restriction-modification systems provide innate immunity by degrading invading DNAs that lack proper methylation. CRISPR-Cas systems provide adaptive immunity by sampling the genome of past invaders and cutting the DNA of closely related DNA molecules. These barriers also restrict horizontal gene transfer mediated by conjugative plasmids. IncC conjugative plasmids are important contributors to the global dissemination of multidrug resistance among pathogenic bacteria infecting animals and humans. Here, we show that IncC conjugative plasmids are highly resilient to host defence systems during entry into a new host by conjugation. Using a TnSeq strategy, we uncover a conserved operon containing five genes (vcrx089-vcrx093) that confer a novel host defence evasion (hde) phenotype. We show that vcrx089-vcrx090 promote resistance against type I restriction-modification, whereas vcrx091-vcxr093 promote CRISPR-Cas evasion by repairing double-strand DNA breaks via recombination between short sequence repeats. vcrx091, vcrx092 and vcrx093 encode a single-strand binding protein, and a single-strand annealing recombinase and double-strand exonuclease related to Redß and λExo of bacteriophage λ, respectively. Homologous genes of the integrative and conjugative element R391 also provide CRISPR-Cas evasion. Hence, the conserved hde operon considerably broadens the host range of large families of mobile elements spreading multidrug resistance.


Assuntos
Sistemas CRISPR-Cas , Conjugação Genética , Enzimas de Restrição-Modificação do DNA/genética , Escherichia coli/genética , Plasmídeos/genética , Vibrio cholerae/genética , Bacteriófago lambda/genética , Transferência Genética Horizontal , Óperon
13.
EMBO J ; 38(16): e101955, 2019 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-31294478

RESUMO

R-loop disassembly by the human helicase Senataxin contributes to genome integrity and to proper transcription termination at a subset of RNA polymerase II genes. Whether Senataxin also contributes to transcription termination at other classes of genes has remained unclear. Here, we show that Sen1, one of two fission yeast homologues of Senataxin, promotes efficient termination of RNA polymerase III (RNAP3) transcription in vivo. In the absence of Sen1, RNAP3 accumulates downstream of RNAP3-transcribed genes and produces long exosome-sensitive 3'-extended transcripts. Importantly, neither of these defects was affected by the removal of R-loops. The finding that Sen1 acts as an ancillary factor for RNAP3 transcription termination in vivo challenges the pre-existing view that RNAP3 terminates transcription autonomously. We propose that Sen1 is a cofactor for transcription termination that has been co-opted by different RNA polymerases in the course of evolution.


Assuntos
DNA Helicases/metabolismo , RNA Helicases/metabolismo , RNA Polimerase III/genética , Schizosaccharomyces/crescimento & desenvolvimento , Regulação Fúngica da Expressão Gênica , RNA de Transferência/química , RNA de Transferência/genética , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Terminação da Transcrição Genética
14.
Nucleic Acids Res ; 47(D1): D403-D410, 2019 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-30299502

RESUMO

Advances in proteomics and sequencing have highlighted many non-annotated open reading frames (ORFs) in eukaryotic genomes. Genome annotations, cornerstones of today's research, mostly rely on protein prior knowledge and on ab initio prediction algorithms. Such algorithms notably enforce an arbitrary criterion of one coding sequence (CDS) per transcript, leading to a substantial underestimation of the coding potential of eukaryotes. Here, we present OpenProt, the first database fully endorsing a polycistronic model of eukaryotic genomes to date. OpenProt contains all possible ORFs longer than 30 codons across 10 species, and cumulates supporting evidence such as protein conservation, translation and expression. OpenProt annotates all known proteins (RefProts), novel predicted isoforms (Isoforms) and novel predicted proteins from alternative ORFs (AltProts). It incorporates cutting-edge algorithms to evaluate protein orthology and re-interrogate publicly available ribosome profiling and mass spectrometry datasets, supporting the annotation of thousands of predicted ORFs. The constantly growing database currently cumulates evidence from 87 ribosome profiling and 114 mass spectrometry studies from several species, tissues and cell lines. All data is freely available and downloadable from a web platform (www.openprot.org) supporting a genome browser and advanced queries for each species. Thus, OpenProt enables a more comprehensive landscape of eukaryotic genomes' coding potential.


Assuntos
Eucariotos/genética , Genes/genética , Genoma , Fases de Leitura Aberta/genética , Proteoma/genética , Algoritmos , Animais , Humanos , Espectrometria de Massas , Anotação de Sequência Molecular , Isoformas de Proteínas/genética , Proteômica/métodos , Ribossomos/metabolismo , Homologia de Sequência de Aminoácidos
15.
Methods Mol Biol ; 1334: 233-44, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26404154

RESUMO

RNA-guided Cas9 nucleases derived from clustered regularly interspaced short palindromic repeat (CRISPR)-Cas systems have recently been adapted as sequence-programmable tools for various purposes such as genome editing and transcriptional regulation. A critical aspect of the system is the selection and validation of spacer sequences that allow precise targeting of the guide RNA-Cas9 complex. We describe a procedure involving computational and experimental steps to identify and test potentially interesting spacer sequences in bacterial genomes.


Assuntos
Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Engenharia Genética/métodos , Edição de RNA/genética , Transcrição Gênica , Sistemas CRISPR-Cas/genética , Endonucleases/genética , Regulação da Expressão Gênica , Genoma Bacteriano , Mutação
16.
Genome Announc ; 2(5)2014 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-25323716

RESUMO

Escherichia coli BW25113 is the parent strain of the Keio collection comprising nearly 4,000 single-gene deletion mutants. We report the complete 4,631,469-bp genome sequence of this strain and the key variations from the type strain E. coli MG1655.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...