Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 11(11): e0167136, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27902755

RESUMO

BACKGROUND: As part of efforts to eliminate malaria, Vanuatu has piloted the implementation of enhanced malaria surveillance and response strategies since 2011. This involves passive case detection (PCD) in health facilities, proactive case detection (Pro-ACD) and reactive case detection (Re-ACD) in communities using malaria rapid diagnostic tests (RDTs). While RDTs improve case management, their utility for detection of malaria infections in ACDs in this setting is unclear. METHODS: The utility of malaria RDTs as diagnostic tools was evaluated in PCD, in five rounds of Pro-ACDs and five rounds of Re-ACDs conducted in Tafea and Torba Provinces between 2011 and 2014. The number of malaria infections detected by RDTs was compared to that detected by PCR from collected used-RDTs. RESULTS: PCD in Tafea Province (2013) showed a RDT-positive rate of 0.21% (2/939) and a PCR-positive rate of 0.44% (2/453), indicating less than 1% of suspected malaria cases in Tafea Province were due to malaria. In Pro-ACDs conducted in Tafea and Torba Provinces, RDT-positive rates in 2013 and 2014 were 0.14% (3/2145) and 0% (0/2823), respectively, while the corresponding PCR-positive rates were 0.72% (9/1242) and 0.79% (9/1141). PCR identified villages in both provinces appearing to be transmission foci with a small number of low-density infections, mainly P. falciparum infections. In five rounds of Re-ACD, RDTs did not identify any additional infections while PCR detected only one among 173 subjects screened. CONCLUSIONS: PCD and Pro-ACDs demonstrate that both Tafea and Torba Provinces in Vanuatu has achieved very low malaria prevalence. In these low-transmission areas, conducting Pro-ACD and Re-ACDs using RDTs appears not cost-effective and may have limited impact on interrupting malaria transmission due to the small number of infections identified by RDTs and considerable operational resources invested. More sensitive, field deployable and affordable diagnostic tools will improve malaria surveillance in malaria elimination settings.


Assuntos
Testes Diagnósticos de Rotina/estatística & dados numéricos , Monitoramento Epidemiológico , Malária/diagnóstico , Malária/epidemiologia , Humanos , Prevalência , Inquéritos e Questionários , Fatores de Tempo , Vanuatu/epidemiologia
2.
PLoS One ; 11(6): e0157906, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27326764

RESUMO

BACKGROUND: Artemisinin-induced dormancy provides a plausible explanation for recrudescence following artemisinin monotherapy. This phenomenon shares similarities with cell cycle arrest where cyclin dependent kinases (CDKs) and cyclins play an important role. METHODS: Transcription profiles of Plasmodium falciparum CDKs and cyclins before and after dihydroartemisinin (DHA) treatment in three parasite lines, and the effect of CDK inhibitors on parasite recovery from DHA-induced dormancy were investigated. RESULTS: After DHA treatment, parasites enter a dormancy phase followed by a recovery phase. During the dormancy phase parasites up-regulate pfcrk1, pfcrk4, pfcyc2 and pfcyc4, and down-regulate pfmrk, pfpk5, pfpk6, pfcrk3, pfcyc1 and pfcyc3. When entering the recovery phase parasites immediately up-regulate all CDK and cyclin genes. Three CDK inhibitors, olomoucine, WR636638 and roscovitine, produced distinct effects on different phases of DHA-induced dormancy, blocking parasites recovery. CONCLUSIONS: The up-regulation of PfCRK1 and PfCRK4, and down regulation of other CDKs and cyclins correlate with parasite survival in the dormant state. Changes in CDK expression are likely to negatively regulate parasite progression from G1 to S phase. These findings provide new insights into the mechanism of artemisinin-induced dormancy and cell cycle regulation of P. falciparum, opening new opportunities for preventing recrudescence following artemisinin treatment.


Assuntos
Artemisininas/farmacologia , Quinases Ciclina-Dependentes/metabolismo , Plasmodium falciparum/enzimologia , Plasmodium falciparum/fisiologia , Animais , Quinases Ciclina-Dependentes/antagonistas & inibidores , Ciclinas/metabolismo , Genes de Protozoários , Estágios do Ciclo de Vida/efeitos dos fármacos , Parasitemia/genética , Parasitemia/parasitologia , Parasitos/efeitos dos fármacos , Parasitos/crescimento & desenvolvimento , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/genética , Inibidores de Proteínas Quinases/farmacologia , Transcrição Gênica/efeitos dos fármacos
3.
J Infect Dis ; 212(3): 426-34, 2015 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-25635122

RESUMO

Artemisinin-induced dormancy is a proposed mechanism for failures of monotherapy and is linked with artemisinin resistance in Plasmodium falciparum. The biological characterization and dynamics of dormant parasites are not well understood. Here we report that after dihydroartemisinin treatment in vitro, a small subset of morphologically dormant parasites was stained with rhodamine 123 (RH), a mitochondrial membrane potential marker, and persisted to recovery. RH-positive parasites sorted with fluorescence-activated cell sorting resumed growth at 10,000/well whereas RH-negative parasites failed to recover at 5 million/well. Furthermore, transcriptional activity for mitochondrial enzymes was detected only in RH-positive dormant parasites. Importantly, after treatment of dormant parasites with different concentrations of atovaquone, a mitochondrial inhibitor, the recovery of dormant parasites was delayed or stopped. This demonstrates that mitochondrial activity is critical for survival and regrowth of dormant parasites and that RH staining provides a means of identifying these parasites. These findings provide novel paths for studying and eradicating this dormant stage.


Assuntos
Antimaláricos/farmacologia , Artemisininas/farmacologia , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Potencial da Membrana Mitocondrial/fisiologia , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/fisiologia , Atovaquona/farmacologia , Corantes Fluorescentes/análise , Genes Mitocondriais , Humanos , Rodamina 123/análise
4.
Malar J ; 13: 402, 2014 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-25311473

RESUMO

BACKGROUND: Plasmodium falciparum and Plasmodium vivax are endemic in Vanuatu and the Solomon Islands. While both countries have introduced artemether-lumefantrine (AL) as first-line therapy for both P. falciparum and P. vivax since 2008, chloroquine and sulphadoxine-pyrimethamine (SP) were used as first-line therapy for many years prior to the introduction of AL. Limited data are available on the extent of SP resistance at the time of policy change. METHODS: Blood spots were obtained from epidemiological surveys conducted on Tanna Island, Tafea Province, Vanuatu and Temotu Province, Solomon Islands in 2008. Additional samples from Malaita Province, Solomon Islands were collected as part of an AL therapeutic efficacy study conducted in 2008. Plasmodium vivax and P. falciparum dhfr and dhps genes were sequenced to detect nucleotide polymorphisms. RESULTS: All P. falciparum samples analysed (n=114) possessed a double mutant pfdhfr allele (C59R/S108N). Additionally, mutation A437G in pfhdps was detected in a small number of samples 2/13, 1/17 and 3/26 from Tanna Island, Vanuatu and Temotu and Malaita Provinces Solomon Islands respectively. Mutations were also common in pvdhfr from Tanna Island, Vanuatu, where 33/51 parasites carried the double amino acid substitution S58R/S117N, while in Temotu and Malaita Provinces, Solomon Islands 32/40 and 39/46 isolates carried the quadruple amino acid substitution F57L/S58R/T61M/S117T in DHFR respectively. No mutations in pvdhps (n=108) were detected in these three island groups. CONCLUSION: Prior to the introduction of AL, there was a moderate level of SP resistance in the P. falciparum population that may cause SP treatment failure in young children. Of the P. vivax isolates, a majority of Solomon Islands isolates carried quadruple mutant pvdhfr alleles while a majority of Vanuatu isolates carried double mutant pvdhfr alleles. This suggests a higher level of SP resistance in the P. vivax population in Solomon Islands compared to the sympatric P. falciparum population and there is a higher level of SP resistance in P. vivax parasites from Solomon Islands than Vanuatu. This study demonstrates that the change of treatment policy in these countries from SP to ACT was timely. The information also provides a baseline for future monitoring.


Assuntos
Di-Hidropteroato Sintase/genética , Plasmodium falciparum/genética , Plasmodium vivax/genética , Tetra-Hidrofolato Desidrogenase/genética , Antimaláricos , Artemisininas , Estudos Transversais , Teste em Amostras de Sangue Seco , Combinação de Medicamentos , Quimioterapia Combinada , Marcadores Genéticos , Humanos , Malária/epidemiologia , Malária/parasitologia , Melanesia/epidemiologia , Mutação/genética , Plasmodium falciparum/enzimologia , Plasmodium vivax/enzimologia , Pirimetamina , Sulfadoxina , Vanuatu/epidemiologia
5.
Malar J ; 13: 406, 2014 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-25318907

RESUMO

BACKGROUND: Chloroquine (CQ), alone or in combination with sulphadoxine-pyrimethamine, was widely used for the treatment of Plasmodium falciparum and Plasmodium vivax for several decades in both Vanuatu and Solomon Islands prior to the introduction of artemether-lumefantrine (AL) in 2008. However, the effect of chloroquine selection on parasite population, which may affect the efficacy of lumefantrine or other partner drugs of artemisinin, has not been well assessed. This study aims to provide baseline data on molecular markers (pfcrt and pfmdr1), along with the origins of pfcrt, prior to the introduction of AL. METHODS: Blood spots were obtained from epidemiological surveys conducted on Tanna Island, Tafea Province, Vanuatu and Temotu Province, Solomon Islands in 2008. Additional samples from Malaita Province, Solomon Islands were collected as part of an artemether-lumefantrine efficacy study in 2008. Plasmodium falciparum pfcrt and pfmdr1 genes were examined for polymorphisms. Microsatellite markers flanking pfcrt were also examined to ascertain origins of CQ resistance. RESULTS: Pfcrt analysis revealed 100% of parasites from Tafea Province, Vanuatu and Malaita Province, Solomon Islands and 98% of parasites from Temotu Province, Solomon Islands carried the K76T polymorphism that confers CQ resistance. Comparison of pfcrt allelic patterns and microsatellite markers flanking pfcrt revealed six haplotypes with more than 70% of isolates possessing haplotypes very similar to those observed in Papua New Guinea. The dominant (98.5%) pfmdr1 allele across all island groups was YYCND. CONCLUSIONS: Prior to the introduction of AL in the Solomon Islands and Vanuatu, P. falciparum isolates possessed point mutations known to confer CQ resistance and possibly associated with a decreased susceptibility to quinine and halofantrine, but an increased susceptibility to artemisinin and lumefantrine. Overall, pfcrt allelic types and the flanking microsatellite markers exhibited similarities to those of Papua New Guinea, suggesting these parasites share a common ancestry. The current use of AL for both P. falciparum and P. vivax infections will enable changes in these markers, in the absence of CQ pressure, to be monitored.


Assuntos
Antimaláricos/uso terapêutico , Artemisininas/uso terapêutico , Malária Falciparum/tratamento farmacológico , Malária Falciparum/parasitologia , Proteínas de Membrana Transportadoras/genética , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Plasmodium falciparum/genética , Proteínas de Protozoários/genética , Criança , Pré-Escolar , Teste em Amostras de Sangue Seco , Quimioterapia Combinada , Haplótipos , Humanos , Malária Falciparum/epidemiologia , Melanesia/epidemiologia , Repetições de Microssatélites , Prevalência , Vanuatu/epidemiologia
6.
J Infect Dis ; 196(3): 467-74, 2007 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-17597462

RESUMO

With the emergence of drug-resistant vivax malaria, in vitro studies are urgently needed to examine resistance mechanisms and for drug development. Currently, Plasmodium vivax culturing is inadequate for addressing these needs; therefore, surrogate biological systems have been developed. Although these systems are informative, they do not address Plasmodium species-specific mechanisms, such as drug delivery through erythrocytes and parasite membranes. Here, we demonstrate that P. falciparum is an excellent biological system for expression of P. vivax dhfr-ts alleles to assess dihydrofolate reductase (DHFR)-thymidylate synthase interactions with antifolates. Our results show that the P. vivax dhfr-ts quadruple-mutant allele AMRU1, expressed in P. falciparum, provides significant protection against pyrimethamine, cycloguanil, and clocicguanil. Moreover, the PvDHFR quadruple mutant confers greater resistance to cycloguanil, clociguanil, and WR99210 than the PfDHFR quadruple mutant. Modeling of both P. vivax and P. falciparum DHFR quadruple mutants suggests that mutations unique to P. vivax DHFR are responsible for differences seen in parasite susceptibility to antifolates.


Assuntos
Antimaláricos/farmacologia , Resistência a Medicamentos , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/metabolismo , Plasmodium vivax/enzimologia , Tetra-Hidrofolato Desidrogenase/genética , Timidilato Sintase/genética , Animais , Animais Geneticamente Modificados , Sítios de Ligação , Regulação da Expressão Gênica , Mutação , Conformação Proteica , Tetra-Hidrofolato Desidrogenase/metabolismo , Timidilato Sintase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...