Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
RSC Adv ; 12(11): 6525-6532, 2022 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-35424647

RESUMO

A technique of obtaining plexitonic structures based on Ag2S quantum dots passivated with l-cysteine (Ag2S/l-Cys QDs) in the presence of Au nanorods passivated with cetyltrimethylammonium bromide molecules (Au/CTAB NRs) with controlled luminescence properties has been developed. The structural and luminescence properties of Ag2S/l-Cys QDs with Au/CTAB NRs are studied. The effect of plasmonic Au/CTAB NRs on IR trap state luminescence (750 nm) is considered. It has been found that the direct interaction between the components of the plexcitonic nanostructure leads to a significant luminescence quenching of Ag2S/l-Cys QDs, with the luminescence lifetime being constant. This is the evidence for photoinduced charge transfer. The spatial separation of the components of plexcitonic nanostructures due to the introduction of a polymer - poly(diallyldimethylammonium chloride) (polyDADMAC) provides a means to change their mutual arrangement and achieve an increase in the IR trap state luminescence intensity and a decrease in the luminescence lifetime from 7.2 ns to 4.5 ns. With weak plexcitonic coupling in the nanostructures [Ag2S QD/l-Cys]/[polyDADMAC]/[Au/CTAB NRs], the possibility of increasing the quantum yield of trap state luminescence for Ag2S QDs due to the Purcell effect has been demonstrated. In the case of formation [Ag2S QD/l-Cys]/[polyDADMAC]/[Au/CTAB NRs] a transformation of shallow trap state structure was established using the thermostimulated luminescence method.

3.
Opt Express ; 30(4): 4668-4679, 2022 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-35209443

RESUMO

The luminescence properties of Ag2S quantum dots passivated with L-Cysteine (Ag2S/L-Cys QDs) are studied in the presence of Au nanorods passivated with cetyltrimethylammonium bromide molecules (Au/CTAB NRs). The effect of plasmonic Au/CTAB NRs on IR trap state luminescence (750 nm) is considered. It has been found that the direct interaction between the components of the plexcitonic nanostructure leads to a significant luminescence quenching of Ag2S/L-Cys QDs, with the luminescence lifetime being constant. This is the evidence for photoinduced charge transfer. The spatial separation of the components of plexcitonic nanostructures due to the introduction of a polymer - Poly(diallyldimethylammonium chloride) (PolyDADMAC) provides a means to change their mutual arrangement and achieve an increase in the IR trap state luminescence intensity and a decrease in the luminescence lifetime from 7.4 ns to 4.5 ns. With weak plexcitonic coupling in the nanostructures [Ag2S QD/L-Cys]/[PolyDADMAC]/[Au/CTAB NRs], the possibility of increasing the quantum yield of trap state luminescence for Ag2S QDs due to the Purcell effect has been demonstrated.

4.
J Fluoresc ; 30(3): 581-589, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32236787

RESUMO

The regularities of the electron excitations exchange in hybrid associates of colloidal Ag2S quantum dots, passivated with thioglycolic acid (Ag2S/TGA QDs) with an average size of 2.2 and 3.7 nm with Indocyanine Green J-aggregates (ICG) were studied in this work by methods of absorption and luminescence spectroscopy. It was shown that IR luminescence sensitization of Ag2S/TGA QDs with an average size of 3.7 nm in the region of 1040 nm is possible due to non-radiative resonance energy transfer from Ag2S/TGA QDs with an average size of 2.2 nm and luminescence peak at 900 nm using ICG J-aggregate as an exciton bridge. The sensitization efficiency is 0.33. This technique provides a transition from the first therapeutic window (NIR-I, 700-950 nm) to the second (NIR-II, 1000-1700 nm). It can allow high to increase the imaging in vivo resolution.

5.
Materials (Basel) ; 13(4)2020 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-32085555

RESUMO

The mechanism features of colloidal quantum dots (QDs) passivation with thioglycolic acid molecules (TGA) for cases of different luminescent properties is considered using FTIR. This problem is considered based on FTIR spectra analysis for various ionic forms of TGA. Experimental TGA molecules FTIR spectra is interpreted, basing on the data on modeling of TGA vibrational modes, realized in the framework of density functional method (DFT /B3LYP/6-31+G(d)) taking into account the vibrations anharmonicity of every functional group. This approach provides a significant improvement in the agreement between the experimental and calculated data. FTIR spectra of Ag 2 S/TGA QDs with exciton and recombination luminescence are differ from each other and B "freeB" TGA molecules. The ν ( S - H ) TGA peak (2559 cm - 1 ) disappears in FTIR spectra of Ag 2 S/TGA QD samples. This fact indicates the interactions between TGA thiol group and dangling bonds of Ag 2 S nanocrystals. Ag 2 S QDs passivation with TGA molecules leads to emergence ν a s (COO - ) (1584 cm - 1 ) and ν s (COO - ) (1387 cm - 1 ) peaks. It indicates TGA adsorption in ionic form. For Ag 2 S/TGA QDs with exciton luminescence we observed (a) significant low-frequency shift of ν s (COO - ) peak from 1388 cm - 1 to 1359 cm - 1 and high-frequency shift of ν a s (COO - ) peak from 1567 cm - 1 to 1581 cm - 1 ; (b) change in the ratio of intensities of ν a s (COO - ) and ν s (COO - ) vibrations. This feature is caused by the change in the symmetry of TGA molecules due to passivation of Ag 2 S quantum dots.For Ag 2 S/TGA QDs with recombination luminescence, the insignificant high-frequency shift of 7-10 cm - 1 for ν a s (COO - ) at 1567 cm - 1 and low-frequency shift of 3-5 cm - 1 for ν s (COO - ) at 1388 cm - 1 , probably caused by the interaction of thiol with Ag 2 S surface is observed. Using FTIR spectra, it was found that IR luminescence photodegradation is also accompanied by changes in the thioglycolic acid molecules, which capped Ag 2 S QDs. In the case of Ag 2 S QDs with exciton luminescence, the degradation process is non-reversible. It is accompanied by TGA photodegradation with the formation of α -thiol-substituted acyl radical (S-CH 2 -CO • ) TGA.

6.
RSC Adv ; 9(64): 37312-37320, 2019 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-35542295

RESUMO

In this paper, we present the results on photoinduced formation of colloidal Ag2S quantum dots with sizes of 1.5-3 nm passivated by 2-mercaptopropionic acid (Ag2S/2-MPA) in the presence of ethylene glycol. The synthetized colloidal Ag2S/2-MPA QDs have NIR recombination luminescence with its maximum near 800 nm. The control of absorption and luminescence properties of the QDs is achieved by photoactivation. It is shown that photoexposure of colloidal solution of Ag2S/2-MPA QDs leads to an increase in the QD size and monodispersity along side with the growth of the luminescence quantum yield from 1% to 7.9%. Enhancement of the luminescence quantum yield is accompanied by an increase in the average luminescence lifetime up to 190 ns, which is due to the blocking of the nonradiative recombination channel with the radiative recombination rate being (3-5.5) × 105 s-1. It is shown that the purification of the Ag2S/2-MPA solution by a dialysis membrane from regenerated cellulose leads to an increase in the sample monodispersity, as well as stops the photoinduced growth of QDs, and also reduces the degradation of their photoluminescence.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...