Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 2590, 2023 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-37147315

RESUMO

Spin-orbit torques (SOTs) have opened a novel way to manipulate the magnetization using in-plane current, with a great potential for the development of fast and low power information technologies. It has been recently shown that two-dimensional electron gases (2DEGs) appearing at oxide interfaces provide a highly efficient spin-to-charge current interconversion. The ability to manipulate 2DEGs using gate voltages could offer a degree of freedom lacking in the classical ferromagnetic/spin Hall effect bilayers for spin-orbitronics, in which the sign and amplitude of SOTs at a given current are fixed by the stack structure. Here, we report the non-volatile electric-field control of SOTs in an oxide-based Rashba-Edelstein 2DEG. We demonstrate that the 2DEG is controlled using a back-gate electric-field, providing two remanent and switchable states, with a large resistance contrast of 1064%. The SOTs can then be controlled electrically in a non-volatile way, both in amplitude and in sign. This achievement in a 2DEG-CoFeB/MgO heterostructures with large perpendicular magnetization further validates the compatibility of oxide 2DEGs for magnetic tunnel junction integration, paving the way to the advent of electrically reconfigurable SOT MRAMS circuits, SOT oscillators, skyrmion and domain-wall-based devices, and magnonic circuits.

2.
Nano Lett ; 22(19): 7867-7873, 2022 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-36136339

RESUMO

Spin-orbit effects appearing in topological insulators (TI) and at Rashba interfaces are currently revolutionizing how we can manipulate spins and have led to several newly discovered effects, from spin-charge interconversion and spin-orbit torques to novel magnetoresistance phenomena. In particular, a puzzling magnetoresistance has been evidenced as bilinear in electric and magnetic fields. Here, we report the observation of bilinear magnetoresistance (BMR) in strained HgTe, a prototypical TI. We show that both the amplitude and sign of this BMR can be tuned by controlling with an electric gate the relative proportions of the opposite contributions of opposite surfaces. At magnetic fields of 1 T, the magnetoresistance is of the order of 1% and has a larger figure of merit than previously measured TIs. We propose a theoretical model giving a quantitative account of our experimental data. This phenomenon, unique to TI, offers novel opportunities to tune their electrical response for spintronics.

3.
Phys Rev Lett ; 125(26): 267204, 2020 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-33449788

RESUMO

Large spin Hall angles have been observed in 3d ferromagnets, but their origin, and especially their link with the ferromagnetic order, remain unclear. Here, we investigate the evolution of the inverse spin Hall effect of Ni_{60}Cu_{40} and Ni_{50}Cu_{50} across their Curie temperatures using spin-pumping experiments. We show that the inverse spin Hall effect in these samples is comparable to that of platinum, and that it is insensitive to the magnetic order. These results point toward a Heisenberg localized model of the transition and suggest that the large spin Hall effects in 3d ferromagnets can be independent of the magnetic phase.

4.
Nano Lett ; 19(12): 8621-8629, 2019 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-31697502

RESUMO

Magnetic tunnel junctions (MTJs) capable of electrical read and write operations have emerged as a canonical building block for nonvolatile memory and logic. However, the cause of the widespread device properties found experimentally in various MTJ stacks, including tunneling magnetoresistance (TMR), perpendicular magnetic anisotropy (PMA), and voltage-controlled magnetic anisotropy (VCMA), remains elusive. Here, using high-resolution transmission electron microscopy and energy-dispersive X-ray spectroscopy, we found that the MTJ crystallization quality, boron diffusion out of the CoFeB fixed layer, and minimal oxidation of the fixed layer correlate with the TMR. As with the CoFeB free layer, seed layer diffusion into the free layer/MgO interface is negatively correlated with the interfacial PMA, whereas the metal-oxides concentrations in the free layer correlate with the VCMA. Combined with formation enthalpy and thermal diffusion analysis that can explain the evolution of element distribution from MTJ stack designs and annealing temperatures, we further established a predictive materials design framework to guide the complex design space explorations for high-performance MTJs. On the basis of this framework, we demonstrate experimentally high PMA and VCMA values of 1.74 mJ/m2 and 115 fJ/V·m-1 with annealing stability above 400 °C.

5.
Phys Rev Lett ; 110(25): 250503, 2013 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-23829721

RESUMO

We propose a multimode quantum memory protocol able to store the quantum state of the field in a microwave resonator into an ensemble of electronic spins. The stored information is protected against inhomogeneous broadening of the spin ensemble by spin-echo techniques resulting in memory times orders of magnitude longer than previously achieved. By calculating the evolution of the first and second moments of the spin-cavity system variables for current experimental parameters, we show that a memory based on nitrogen vacancy center spins in diamond can store a qubit encoded on the |0> and |1> Fock states of the field with 80% fidelity and outperform classical memory strategies for storage times ≤69 µs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...