Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Pharmacol ; 14: 1193118, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38143489

RESUMO

Introduction: In traditional Chinese medicine, the root bark of Morus alba L. is used to treat respiratory infections. Recently, anti-inflammatory and multiple anti-infective activities (against influenza viruses, corona virus 2, S. aureus, and S. pneumoniae) were shown in vitro for a standardized root bark extract from M. alba (MA60). Sanggenons C and D were identified as major active constituents of MA60. The aim of the present preclinical study was to evaluate, whether these findings are transferable to an in vivo setting. Methods: MA60 was orally administered to female BALB/c mice to determine 1) the maximum tolerated dose (MTD) in an acute toxicity study and 2) its anti-influenza virus and anti-inflammatory effects in an efficacy study. A further aim was to evaluate whether there is a correlation between the obtained results and the amount of sanggenons C and D in serum and tissues. For the quantitation of the marker compounds sanggenons C and D in serum and tissue samples an UPLC-ESI-MS method was developed and validated. Results: In our study setting, the MTD was reached at 100 mg/kg. In the efficacy study, the treatment effects were moderate. Dose-dependent quantities of sanggenon C in serum and sanggenon D in liver samples were detected. Only very low concentrations of sanggenons C and D were determined in lung samples and none of these compounds was found in spleen samples. There was no compound accumulation when MA60 was administered repeatedly. Discussion: The herein determined low serum concentration after oral application once daily encourages the use of an alternative application route like intravenous, inhalation or intranasal administration and/or multiple dosing in further trials. The established method for the quantitation of the marker sanggenon compounds in tissue samples serves as a basis to determine pharmacokinetic parameters such as their bioavailability in future studies.

2.
Nat Prod Rep ; 40(12): 1849-1873, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-37585263

RESUMO

Covering: 2012 to 2023The human population is aging. Thus, the greatest risk factor for numerous diseases, such as diabetes, cancer and neurodegenerative disorders, is increasing worldwide. Age-related diseases do not typically occur in isolation, but as a result of multi-factorial causes, which in turn require holistic approaches to identify and decipher the mode of action of potential remedies. With the advent of C. elegans as the primary model organism for aging, researchers now have a powerful in vivo tool for identifying and studying agents that effect lifespan and health span. Natural products have been focal research subjects in this respect. This review article covers key developments of the last decade (2012-2023) that have led to the discovery of natural products with healthy aging properties in C. elegans. We (i) discuss the state of knowledge on the effects of natural products on worm aging including methods, assays and involved pathways; (ii) analyze the literature on natural compounds in terms of their molecular properties and the translatability of effects on mammals; (iii) examine the literature on multi-component mixtures with special attention to the studied organisms, extraction methods and efforts regarding the characterization of their chemical composition and their bioactive components. (iv) We further propose to combine small in vivo model organisms such as C. elegans and sophisticated analytical approaches ("wormomics") to guide the way to dissect complex natural products with anti-aging properties.


Assuntos
Produtos Biológicos , Envelhecimento Saudável , Animais , Humanos , Caenorhabditis elegans/metabolismo , Produtos Biológicos/farmacologia , Produtos Biológicos/metabolismo , Envelhecimento , Longevidade , Mamíferos
3.
iScience ; 26(9): 107523, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37636068

RESUMO

The root extract of Peucedanum ostruthium (PO-E) was identified as a promising antibacterial source from a screening of 158 extracts against Staphylococcus aureus. It has also recently been shown to significantly decrease the survival of the nematode Caenorhabditis elegans. We used the biochemometric approach ELINA to investigate the phytochemical characteristics of the multicomponent mixture PO-E to identify the anti-infective constituent(s) targeting S. aureus and C. elegans.1H NMR spectra of PO-E-derived microfractions were correlated with their respective bioactivity data. Heterocovariance analyses unambiguously identified ostruthin as an anti-staphylococcal constituent, which potently also inhibited Enterococcus spp.. ELINA demonstrated that anthelmintic activity was due to a combinatorial effect of ostruthin and isoimperatorin. A C. elegans-based survival and motility assay confirmed that isoimperatorin, imperatorin, and verapamil modulated the susceptibility of ostruthin. The combinatorial effect of these natural products was shown in larvae studies to be related to the function of the nematodes' efflux pump.

4.
Front Mol Biosci ; 10: 1202394, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37347040

RESUMO

A pigment-depleted extract from the heartwood of Pterocarpus santalinus L. f. (PS-DE) showed promising anti-SARS-CoV-2 activity with an IC50 of 29.9 µg/mL in Caco-2-F03 cells. To determine the potential active constituents within the extract prior to isolation, multi-informative molecular network (MN) was applied. Therefore, the extract was separated by high-performance counter-current chromatography (HPCCC) into 11 fractions which were subsequently tested for anti-SARS-CoV-2 activity and analysed by UPLC-tandem mass spectrometry (MS2). The resulting MN combines the bioactivity data of the fractions with the MS2 data. The MN analysis led to the targeted isolation of seven compounds including one pterocarpan (7) reported for the first time as constituent of P. santalinus and four so far undescribed natural products (NPs) that belong to the compound classes of arylpropanes (9), isoflavanones (10) coumestans (16) and 3-arylcoumarins (17), respectively. In total, 15 constituents from the heartwood of P. santalinus and one synthetic isoflavonoid that is structurally related to the natural metabolites were tested for anti-SARS-CoV-2 activity. Thereby, the two pterocarpans (-)-homopterocarpin (5) and (-)-medicarpin (2), the stilbene (E)-pterostilbene (1) and the isoflavonoid 7-O-methylgenistein (11) showed a distinct antiviral activity with IC50 values of 17.2, 33.4, 34.7, and 37.9 µM, respectively, and no cytotoxic effects against Caco-2-F03 cells (CC50 > 100 µM). In addition, a structure-activity relationship (SAR) was proposed indicating structural requirements of pterocarpans for anti-SARS-CoV-2 activity. The herein presented results support the implementation of multi-informative molecular networks as powerful tool for dereplication and targeted isolation of bioactive NPs.

6.
Phytochemistry ; 212: 113709, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37150433

RESUMO

The heartwood extract of the Ayurvedic medicinal plant Pterocarpus santalinus L. f. has previously been shown to significantly suppress the expression of CX3CL1 and other pro-inflammatory molecules in IL-1-stimulated human endothelial cells. Here, we identify the pigment-depleted extract PSD as the most promising yet still complex source of metabolites acting as an inhibitor of CX3CL1 gene expression. For the target-oriented identification of the constituents contributing to the observed in vitro anti-inflammatory effect of PSD, the biochemometric approach ELINA (Eliciting Nature's Activities) was applied. ELINA relies on the deconvolution of complex mixtures by generating microfractions with quantitative variances of constituents over several consecutive fractions. Therefore, PSD was separated into 35 microfractions by means of flash chromatography. Their 1H NMR data and bioactivity data were correlated by heterocovariance analysis. Complemented by LC-MS-ELSD data, ELINA differentiated between constituents with positive and detrimental effects towards activity and allowed for the prioritization of compounds to be isolated in the early steps of phytochemical investigation. A hyphenated high-performance counter-current chromatographic device (HPCCC+) was employed for efficient and targeted isolation of bioactive constituents. A total of 15 metabolites were isolated, including four previously unreported constituents and nine that have never been described before from red sandalwood. Nine isolates were probed for their inhibitory effects on CX3CL1 gene expression, of which four isoflavonoids, namely pterosonin A (1), santal (6), 7,3'-dimethylorobol (12) and the previously unreported compound pterosantalin A (2), were identified as pronounced inhibitors of CX3CL1 gene expression in vitro.


Assuntos
Células Endoteliais , Pterocarpus , Humanos , Pterocarpus/química , Extratos Vegetais/química , Expressão Gênica
7.
J Nat Prod ; 86(2): 264-275, 2023 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-36651644

RESUMO

In this study, an integrated in silico-in vitro approach was employed to discover natural products (NPs) active against SARS-CoV-2. The two SARS-CoV-2 viral proteases, i.e., main protease (Mpro) and papain-like protease (PLpro), were selected as targets for the in silico study. Virtual hits were obtained by docking more than 140,000 NPs and NP derivatives available in-house and from commercial sources, and 38 virtual hits were experimentally validated in vitro using two enzyme-based assays. Five inhibited the enzyme activity of SARS-CoV-2 Mpro by more than 60% at a concentration of 20 µM, and four of them with high potency (IC50 < 10 µM). These hit compounds were further evaluated for their antiviral activity against SARS-CoV-2 in Calu-3 cells. The results from the cell-based assay revealed three mulberry Diels-Alder-type adducts (MDAAs) from Morus alba with pronounced anti-SARS-CoV-2 activities. Sanggenons C (12), O (13), and G (15) showed IC50 values of 4.6, 8.0, and 7.6 µM and selectivity index values of 5.1, 3.1 and 6.5, respectively. The docking poses of MDAAs in SARS-CoV-2 Mpro proposed a butterfly-shaped binding conformation, which was supported by the results of saturation transfer difference NMR experiments and competitive 1H relaxation dispersion NMR spectroscopy.


Assuntos
Produtos Biológicos , COVID-19 , Humanos , Proteases Virais , SARS-CoV-2 , Peptídeo Hidrolases , Antivirais , Simulação de Acoplamento Molecular , Inibidores de Proteases
8.
J Nat Prod ; 86(1): 8-17, 2023 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-36543521

RESUMO

Mulberry Diels-Alder-type adducts (MDAAs) derived from the white mulberry tree were discovered recently as dual inhibitors of influenza viruses and pneumococci. For the development of a natural product based remedy for respiratory infections, the aim was to (i) identify the most prolific natural source of MDAAs, (ii) develop a protocol to maximize the content of MDAAs in Morus alba extracts, (iii) unravel constituents with the highest anti-infective potential within multicomponent mixtures, and (iv) select and characterize a hit extract as a candidate for further studies. Validated quantitative UPLC-PDA analysis of seven MDAAs (1-7) revealed the root bark as the best starting material and pressurized liquid extraction (PLE) as the optimum technique for extraction. Extracts enriched in MDAAs of a total content above 20% exerted a potent dual anti-influenza virus and antipneumococcal activity. For a detailed analysis of the most bioactive chemical features and molecules within the extracts, 1H NMR-based heterocovariance analysis (HetCA) was used. According to the multivariate statistical analysis procedure conducted, MDAAs exclusively accounted for the in vitro anti-influenza viral effect. The anti-infective profile of one hit extract (MA60) investigated showed a good tolerance by lung cells (A549, Calu-3) and pronounced in vitro activities against influenza viruses, S. pneumoniae, S. aureus, and inflammation.


Assuntos
Anti-Infecciosos , Morus , Espectroscopia de Prótons por Ressonância Magnética , Staphylococcus aureus , Anti-Infecciosos/farmacologia , Espectroscopia de Ressonância Magnética , Morus/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química
9.
Front Pharmacol ; 13: 906411, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35770082

RESUMO

Picea abies (L.) H. Karst. (Pinaceae) is native to Northern, Central and Eastern Europe. The fast-growing tree reaches up to 50 m in height, has modest nutritional requirements and depends on sufficient water supply. The conifer, commonly called Norway spruce, produces exudates which are traditionally used to treat skin wounds in Northern European countries. Major bioactive constituents of the conifer oleoresin are diterpene resin acids (DRAs) of the abietane and the pimarane type. To assure consistent pharmaceutical quality of Norway spruce balm and commercial products thereof, an analytical method for the quantitation of DRAs is the prerequisite. However, high structural similarity among DRAs and their poor UV absorption makes chromatographic separation and detection challenging: Conventional liquid chromatography systems often fail to achieve sufficient separation, moreover, they are not sustainable. Gas chromatography on the other hand requires time-consuming derivatization prior to unacceptably long analyses (>60 min). These drawbacks prompted the development of the first validated supercritical fluid-based protocol for the separation and quantitation of eight DRAs, i.e., pimaric acid (1), sandaracopimaric acid (2), palustric acid (3), isopimaric acid (4), levopimaric acid (5), abietic acid (6), dehydroabietic acid (7), and neoabietic acid (8). By using an ultra high-performance supercritical fluid chromatography (UHPSFC) device hyphenated to a quadrupole mass detector, the DRAs were separated in less than 20 min on a Torus 2-Picolylamin (2-PIC) column (3.0 mm × 100 mm; 1.7 µm particle size) applying supercritical CO2 and ethanol as mobile phase. Regarding selectivity, accuracy (recovery rates: 87-108%), intermediate precision (between 6.6 and 11.1%), and linearity (R2 ≥ 0.99; linear between 0.75 µg/ml and 2.5 mg/ml), results were obtained in line with ICH guidelines. The lowest limit of detection (LOD) was at 0.75 µg/ml (7) and the lowest limit of quantitation (LOQ) at 2 µg/ml (8). As application examples, 22 Norway spruce balm samples and five commercial products were analyzed. The here presented protocol not only simplifies and shortens the analytical workflow, but also reduces the amount of organic solvent waste by about two thirds compared to conventional liquid chromatographic set-ups. These advantages qualify this fast and efficient method as an ideal tool for an environmentally friendly quality control of traditionally used wound-healing Norway spruce balm products.

10.
Molecules ; 27(11)2022 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-35684547

RESUMO

(1) Background: Inhibition of osteoclast differentiation is the key approach in treating osteoporosis. However, using state-of-the-art treatments such as bisphosphonates and estrogen-based therapy is usually accompanied by many side effects. As opposed to this, the use of natural products as an osteoporotic remedy delivers promising outcomes with minimal side effects. (2) Methods: In the present study, we implemented a biochemometric workflow comprising (i) chemometric approaches using NMR and mass spectrometry and (ii) cell biological approaches using an osteoclast cytochemical marker (TRAP). The workflow serves as a screening tool to pursue potential in vitro osteoclast inhibitors. (3) Results: The workflow allowed for the selective isolation of two phenylpropanoids (coniferyl alcohol and sinapyl alcohol) from the fruits of neem tree (Azadirachta indica). These two isolated phenylpropanoids showed a very promising dose-dependent inhibition of osteoclast differentiation with negligible effects in terms of cell viability. (4) Conclusion: The presented workflow is an effective tool in the discovery of potential candidates for osteoclast inhibition from complex extracts. The used biochemometric approach saves time, effort and costs while delivering precise hints to selectively isolate bioactive constituents.


Assuntos
Azadirachta , Azadirachta/química , Frutas , Osteoclastos , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico
11.
Phytomedicine ; 96: 153895, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35026524

RESUMO

BACKGROUND: The anti-influenza A virus activities and contents of previously isolated most active flavonoids (rhodiosin and tricin) from a standardized hydro-ethanolic R. rosea root and rhizome extract (SHR-5®), did not fully explain the efficacy of SHR-5®. Moreover, the mode of antiviral action of SHR-5® is unknown. PURPOSE: To determine the anti-influenza viral principle of SHR-5® we evaluated i) the combined anti-influenza virus effect of rhodiosin and tricin, ii) the impact of its tannin-enriched fraction (TE), iii) its antiviral spectrum and mode of action, and iv) its propensity for resistance development in vitro. METHODS: The combined anti-influenza virus effect of rhodiosin and tricin and the impact of TE were investigated with cytopathic effect (CPE)-inhibition assays in MDCK cells. A tannin-depleted fraction (TD) and TE were prepared by polyamide column chromatography and dereplicated by LC-MS. Plaque-reduction assays provided insights into the anti-influenza virus profile, the mode of action, and the propensity for resistance development of SHR-5®. RESULTS: Our results i) did not reveal synergistic anti-influenza A virus effects of rhodiosin and tricin, but ii) proved a strong impact of TE mainly composed of prodelphinidin gallate oligomers. iii) TE inhibited the plaque-production of influenza virus A(H1N1)pdm09, A(H3N2), and B (Victoria and Yamagata) isolates (including isolates resistant to neuraminidase and/or M2 ion channel inhibitors) with 50% inhibitory concentration values between 0.12 - 0.53 µg/ml similar to SHR-5®. Mechanistic studies proved a virucidal activity, inhibition of viral adsorption, viral neuraminidase activity, and virus spread by SHR-5® and TE. iv) No resistance development was observed in vitro. CONCLUSION: For the first time a comprehensive analysis of the anti-influenza virus profile of a hydro-ethanolic R. rosea extract (SHR-5®) was assessed in vitro. The results demonstrating broad-spectrum multiple direct anti-influenza virus activities, and a lack of resistance development to SHR-5® together with its known augmentation of host defense, support its potential role as an adaptogen against influenza virus infection.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Vírus da Influenza A , Rhodiola , Antivirais/farmacologia , Vírus da Influenza A Subtipo H3N2 , Neuraminidase
12.
Phytochem Anal ; 32(6): 982-991, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33638206

RESUMO

INTRODUCTION: Preparations from the Rhodiola rosea are experiencing an increase in popularity: extracts of dried roots and rhizomes are used as adaptogen to treat stress, fatigue, and weakness. To meet high pharmaceutical standards, fast and reliable methods to assess phytochemical variations in respect of quality control are needed. OBJECTIVE: The aim of this study was to extract and quantify seven characteristic secondary metabolites of R. rosea, namely p-tyrosol (1), rosin (2), rosiridin (3), salidroside (4), rosarin (5), rosavin (6), and tricin-5-O-ß-d-glucopyranoside (7) in 24 herbal drugs and seven commercial preparations using a newly established supercritical fluid workflow. METHODS: The developed protocol allowed for an exhaustive extraction of compounds 1-7 using 60% carbon dioxide (CO2 ) and 40% methanol. The constituents were analysed on an ultra-high-performance supercritical fluid chromatography (UHPSFC) instrument using a charged surface hybrid fluoro-phenyl (CSH FP) column (3.0 mm × 100 mm, 1.7 µm; mobile phase: CO2 and methanol). RESULTS: The seven compounds were separated in a remarkably short time (< 3.5 minutes). For their quantitation, good results in terms of selectivity, linearity (R2 ≥ 0.99), precision (intraday ≤ 3.03%, interday ≤ 5.17%) and accuracy (recovery rates 96.6-102.4%) were achieved using selected ion recording on a Quadrupole Dalton (QDa) mass detector. CONCLUSION: The quantitative analysis of the investigated herbal drugs showed a highly differing metabolite pattern which was also observed in the investigated commercial products. None of the commercial dietary products met the declared content of rosavins and salidroside. The developed and validated protocol offers a novel and reliable method to assess the quantitative composition of Rhodiola herbal drugs and preparations.


Assuntos
Rhodiola , Extratos Vegetais , Raízes de Plantas , Rizoma , Fluxo de Trabalho
13.
Planta Med ; 87(10-11): 818-826, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32781473

RESUMO

In a cytopathic effect inhibition assay, a standardized Rhodiola rosea root and rhizome extract, also known as roseroot extract (SHR-5), exerted distinct anti-influenza A virus activity against HK/68 (H3N2) (IC50 of 2.8 µg/mL) without being cytotoxic. For fast and efficient isolation and identification of the extract's bioactive constituents, a high-performance countercurrent chromatographic separation method was developed. It resulted in a three-stage gradient elution program using a mobile phase solvent system composed of ethyl acetate/n-butanol/water (1 : 4 : 5 → 2 : 3 : 5 → 3 : 2 : 5) in the reversed-phase mode. The elaborated high-performance countercurrent chromatographic method allowed for fractionation of the complex roseroot extract in a single chromatographic step in a way that only one additional orthogonal isolation/purification step per fraction yielded 12 isolated constituents. They cover a broad polarity range and belong to different structural classes, namely, the phenylethanoid tyrosol and its glucoside salidroside, the cinnamyl alcohol glycosides rosavin, rosarin, and rosin as well as gallic acid, the cyanogenic glucoside lotaustralin, the monoterpene glucosides rosiridin and kenposide A, and the flavonoids tricin, tricin-5-O-ß-D-glucopyranoside, and rhodiosin. The most promising anti-influenza activities were determined for rhodiosin, tricin, and tricin-5-O-ß-D-glucopyranoside with IC50 values of 7.9, 13, and 15 µM, respectively. The herein established high-performance countercurrent chromatographic protocol enables fast and scalable access to major as well as minor roseroot constituents. This is of particular relevance for extract standardization, quality control, and further in-depth pharmacological investigations of the metabolites of this popular traditional herbal remedy.


Assuntos
Rhodiola , Distribuição Contracorrente , Glicosídeos , Vírus da Influenza A Subtipo H3N2 , Raízes de Plantas
14.
Biomolecules ; 10(5)2020 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-32354017

RESUMO

Peucedanum ostruthium (L.) Koch, commonly known as masterwort, has a longstanding history as herbal remedy in the Alpine region of Austria, where the roots and rhizomes are traditionally used to treat disorders of the gastrointestinal and respiratory tract. Based on a significant NF-κB inhibitory activity of a P. ostruthium extract (PO-E), this study aimed to decipher those constituents contributing to the observed activity using a recently developed biochemometric approach named ELINA (Eliciting Nature's Activities). This -omics tool relies on a deconvolution of the multicomponent mixture, which was employed by generating microfractions with quantitative variances of constituents over several consecutive fractions. Using an optimized and single high-performance counter-current chromatographic (HPCCC) fractionation step 31 microfractions of PO-E were obtained. 1H NMR data and bioactivity data from three in vitro cell-based assays, i.e., an NF-ĸB reporter-gene assay and two NF-κB target-gene assays (addressing the endothelial adhesion molecules E-selectin and VCAM-1) were collected for all microfractions. Applying heterocovariance analyses (HetCA) and statistical total correlation spectroscopy (STOCSY), quantitative variances of 1H NMR signals of neighboring fractions and their bioactivities were correlated. This revealed distinct chemical features crucial for the observed activities. Complemented by LC-MS-CAD data this biochemometric approach differentiated between active and inactive constituents of the complex mixture, which was confirmed by NF-κB reporter-gene testing of the isolates. In this way, four furanocoumarins (imperatorin, ostruthol, saxalin, and 2'-O-acetyloxypeucedanin), one coumarin (ostruthin), and one chromone (peucenin) were identified as NF-κB inhibiting constituents of PO-E contributing to the observed NF-ĸB inhibitory activity. Additionally, this approach also enabled the disclose of synergistic effects of the PO-E metabolites imperatorin and peucenin. In sum, prior to any isolation an early identification of even minor active constituents, e.g. peucenin and saxalin, ELINA enables the targeted isolation of bioactive constituents and, thus, to effectively accelerate the NP-based drug discovery process.


Assuntos
Anti-Inflamatórios/química , Apiaceae/química , Cumarínicos/análise , Extratos Vegetais/química , Anti-Inflamatórios/farmacologia , Cromatografia Líquida , Cumarínicos/química , Cumarínicos/farmacologia , Selectina E/metabolismo , Células HEK293 , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Espectrometria de Massas , NF-kappa B/metabolismo , Extratos Vegetais/farmacologia , Espectroscopia de Prótons por Ressonância Magnética , Molécula 1 de Adesão de Célula Vascular/metabolismo
15.
Anal Bioanal Chem ; 412(10): 2365-2374, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32130438

RESUMO

In this work, a lipidomics workflow based on offline semi-preparative lipid class-specific fractionation by supercritical fluid chromatography (SFC) followed by high-resolution mass spectrometry was introduced. The powerful SFC approach offered separation of a wide polarity range for lipids, enabled enrichment (up to 3 orders of magnitude) of lipids, selective fractionation of 14 lipid classes/subclasses, and increased dynamic range enabling in-depth characterization. A significantly increased coverage of low abundant lipids improving lipid identification by numbers and degree (species and molecular level) was obtained in Pichia pastoris when comparing high-resolution mass spectrometry based lipidomics with and without prior fractionation. Proof-of-principle experiments using a standard reference material (SRM 1950, NIST) for human plasma showed that the proposed strategy enabled quantitative lipidomics. Indeed, for 70 lipids, the consensus values available for this sample could be met. Thus, the novel workflow is ideally suited for lipid class-specific purification/isolation from milligram amounts of sample while not compromising on omics type of analysis (identification and quantification). Finally, compared with established fractionation/pre-concentration approaches, semi-preparative SFC is superior in terms of versatility, as it involved only volatile modifiers and salt additives facilitating any follow-up use such as qualitative or quantitate analysis or further purification down to the single lipid species level. Graphical Abstract.


Assuntos
Cromatografia com Fluido Supercrítico/métodos , Lipidômica/métodos , Lipídeos/química , Espectrometria de Massas/métodos , Humanos , Metabolismo dos Lipídeos , Lipídeos/sangue , Pichia/química , Pichia/metabolismo , Plasma/química
16.
Planta Med ; 86(15): 1140-1147, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32182624

RESUMO

The importance of hops (the flowers of Humulus lupulus) as food and an herbal remedy is reflected by a large number of analytical methods published. However, supercritical fluid chromatography, a highly efficient, rapid, and "green" separation technique, has not been considered for hops samples so far. This prompted us to establish the first supercritical fluid chromatography-based protocol for the separation, identification, and quantitation of five prenylated constituents of hops. Hulupinic acid ( 1: ), a prominent oxidation product of hop acids, three flavanones, i.e., 8-prenylnaringenin ( 2: ), 6-prenylnaringenin ( 3: ), and isoxanthohumol ( 4: ), as well as the chalcone xanthohumol ( 5: ) could be baseline separated in less than 5 minutes using a Viridis BEH 2-EP column (3.0 × 100 mm; 1.7 µm particle size) and a mobile phase consisting of CO2 and isopropanol. Good results regarding selectivity, accuracy (recovery rates: 85.0 - 113.1%), precision (intra-day ≤ 2.1%, inter-day ≤ 3.5%), and linearity (R2 ≥ 0.99) were obtained for both photodiode array and mass detection. The lowest detection limit at 220 nm was at 0.1 µg/mL ( 1, 3: , and 4: ), with mass detection even at 0.001 µg/mL ( 4: ). As an application example of the validated method, the five hops constituents were quantified in three dietary supplements, one herbal medicinal product, and two batches of hop flowers (Lupuli flos). In most samples analyzed, the major component was 5: (0.01 - 1.02%), whereas the major component in Lupuli flos samples was compound 1: (0.12 - 0.21%). This protocol offers a fast and environmentally friendly alternative to liquid chromatography for the quality control of hops.


Assuntos
Cromatografia com Fluido Supercrítico , Humulus , Cromatografia Líquida , Flavonoides , Extratos Vegetais
17.
J Ethnopharmacol ; 248: 112298, 2020 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-31610260

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: A wide variety of traditional herbal remedies have been used throughout history for the treatment of symptoms related to acute respiratory infections (ARIs). AIM OF THE REVIEW: The present work provides a timely overview of natural products affecting the most common pathogens involved in ARIs, in particular influenza viruses and rhinoviruses as well as bacteria involved in co-infections, their molecular targets, their role in drug discovery, and the current portfolio of available naturally derived anti-ARI drugs. MATERIALS AND METHODS: Literature of the last ten years was evaluated for natural products active against influenza viruses and rhinoviruses. The collected bioactive agents were further investigated for reported activities against ARI-relevant bacteria, and analysed for the chemical space they cover in relation to currently known natural products and approved drugs. RESULTS: An overview of (i) natural compounds active in target-based and/or phenotypic assays relevant to ARIs, (ii) extracts, and (iii) in vivo data are provided, offering not only a starting point for further in-depth phytochemical and antimicrobial studies, but also revealing insights into the most relevant anti-ARI scaffolds and compound classes. Investigations of the chemical space of bioactive natural products based on principal component analysis show that many of these compounds are drug-like. However, some bioactive natural products are substantially larger and have more polar groups than most approved drugs. A workflow with various strategies for the discovery of novel antiviral agents is suggested, thereby evaluating the merit of in silico techniques, the use of complementary assays, and the relevance of ethnopharmacological knowledge on the exploration of the therapeutic potential of natural products. CONCLUSIONS: The longstanding ethnopharmacological tradition of natural remedies against ARIs highlights their therapeutic impact and remains a highly valuable selection criterion for natural materials to be investigated in the search for novel anti-ARI acting concepts. We observe a tendency towards assaying for broad-spectrum antivirals and antibacterials mainly discovered in interdisciplinary academic settings, and ascertain a clear demand for more translational studies to strengthen efforts for the development of effective and safe therapeutic agents for patients suffering from ARIs.


Assuntos
Anti-Infecciosos/uso terapêutico , Produtos Biológicos/uso terapêutico , Infecções Respiratórias/tratamento farmacológico , Doença Aguda , Animais , Humanos
18.
Bioorg Chem ; 95: 103495, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31855822

RESUMO

Steroid sulfatase (STS) transforms hormone precursors into active steroids. Thus, it represents a target of intense research regarding hormone-dependent cancers. In this study, three ligand-based pharmacophore models were developed to identify STS inhibitors from natural sources. In a pharmacophore-based virtual screening of a curated molecular TCM database, lanostane-type triterpenes (LTTs) were predicted as STS ligands. Three traditionally used polypores rich in LTTs, i.e., Ganoderma lucidum Karst., Gloeophyllum odoratum Imazeki, and Fomitopsis pinicola Karst., were selected as starting materials. Based on eighteen thereof isolated LTTs a structure activity relationship for this compound class was established with piptolinic acid D (1), pinicolic acid B (2), and ganoderol A (3) being the most pronounced and first natural product STS inhibitors with IC50 values between 10 and 16 µM. Molecular docking studies proposed crucial ligand target interactions and a prediction tool for these natural compounds correlating with experimental findings.


Assuntos
Inibidores Enzimáticos/farmacologia , Lanosterol/farmacologia , Esteril-Sulfatase/antagonistas & inibidores , Triterpenos/farmacologia , Basidiomycota/química , Coriolaceae/química , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/química , Inibidores Enzimáticos/isolamento & purificação , Humanos , Lanosterol/análogos & derivados , Lanosterol/química , Ligantes , Modelos Moleculares , Estrutura Molecular , Reishi/química , Esteril-Sulfatase/metabolismo , Relação Estrutura-Atividade , Triterpenos/química , Triterpenos/isolamento & purificação
19.
Sci Rep ; 9(1): 11113, 2019 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-31366964

RESUMO

Chemometric methods and correlation of spectroscopic or spectrometric data with bioactivity results are known to improve dereplication in classical bio-guided isolation approaches. However, in drug discovery from natural sources the isolation of bioactive constituents from a crude extract containing close structural analogues remains a significant challenge. This study is a 1H NMR-MS workflow named ELINA (Eliciting Nature's Activities) which is based on statistical heterocovariance analysis (HetCA) of 1H NMR spectra detecting chemical features that are positively ("hot") or negatively ("cold") correlated with bioactivity prior to any isolation. ELINA is exemplified in the discovery of steroid sulfatase (STS) inhibiting lanostane triterpenes (LTTs) from a complex extract of the polypore fungus Fomitopsis pinicola.


Assuntos
Produtos Biológicos/química , Descoberta de Drogas/métodos , Espectroscopia de Prótons por Ressonância Magnética/métodos , Coriolaceae/metabolismo , Espectroscopia de Ressonância Magnética/métodos , Espectrometria de Massas/métodos , Triterpenos/química
20.
Planta Med ; 85(3): 195-202, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30130818

RESUMO

In an in vitro screening for anti-influenza agents from European polypores, the fruit body extract of Gloeophyllum odoratum dose-dependently inhibited the cytopathic effect of the H3N2 influenza virus A/Hong Kong/68 (HK/68) in Madin Darby canine kidney cells with a 50% inhibitory concentration (IC50) of 15 µg/mL, a noncytotoxic concentration. After a chromatographic work-up, eight lanostane triterpenes (1: -8: ) were isolated and their structures were elucidated based on high-resolution electrospray ionization mass spectrometry analyses, and one- and two-dimensional nuclear magnetic resonance experiments. Constituents 1: (gloeophyllin K) and 2: (gloeophyllin L) are reported here for the first time, and compounds 5: , 7: , and 8: have not been described for the investigated fungal material so far. The highest activity was determined for trametenolic acid B (3: ) against HK/68 and the 2009 pandemic H1N1 strain A/Jena/8178/09 with IC50 values of 14 and 11 µM, respectively. In a plaque reduction assay, this compound was able to bind to cell-free viruses and to neutralize their infectivity.


Assuntos
Antivirais/farmacologia , Basidiomycota/química , Vírus da Influenza A Subtipo H1N1/efeitos dos fármacos , Vírus da Influenza A Subtipo H3N2/efeitos dos fármacos , Triterpenos/farmacologia , Animais , Antivirais/isolamento & purificação , Cães , Relação Dose-Resposta a Droga , Concentração Inibidora 50 , Células Madin Darby de Rim Canino/virologia , Espectroscopia de Ressonância Magnética , Espectrometria de Massas por Ionização por Electrospray , Triterpenos/isolamento & purificação , Ensaio de Placa Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...