Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
New Phytol ; 242(5): 2270-2284, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38532557

RESUMO

Floral nectar composition beyond common sugars shows great diversity but contributing genetic factors are generally unknown. Manuka (Leptospermum scoparium) is renowned for the antimicrobial compound methylglyoxal in its derived honey, which originates from the precursor, dihydroxyacetone (DHA), accumulating in the nectar. Although this nectar trait is highly variable, genetic contribution to the trait is unclear. Therefore, we investigated key gene(s) and genomic regions underpinning this trait. We used RNAseq analysis to identify nectary-associated genes differentially expressed between high and low nectar DHA genotypes. We also used a manuka high-density linkage map and quantitative trait loci (QTL) mapping population, supported by an improved genome assembly, to reveal genetic regions associated with nectar DHA content. Expression and QTL analyses both pointed to the involvement of a phosphatase gene, LsSgpp2. The expression pattern of LsSgpp2 correlated with nectar DHA accumulation, and it co-located with a QTL on chromosome 4. The identification of three QTLs, some of the first reported for a plant nectar trait, indicates polygenic control of DHA content. We have established plant genetics as a key influence on DHA accumulation. The data suggest the hypothesis of LsSGPP2 releasing DHA from DHA-phosphate and variability in LsSgpp2 gene expression contributing to the trait variability.


Assuntos
Di-Hidroxiacetona , Regulação da Expressão Gênica de Plantas , Leptospermum , Néctar de Plantas , Locos de Características Quantitativas , Locos de Características Quantitativas/genética , Néctar de Plantas/metabolismo , Di-Hidroxiacetona/metabolismo , Leptospermum/metabolismo , Monoéster Fosfórico Hidrolases/genética , Monoéster Fosfórico Hidrolases/metabolismo , Genes de Plantas , Genótipo , Mapeamento Cromossômico , Cromossomos de Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
2.
Mol Ecol Resour ; 22(1): 345-360, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34260155

RESUMO

Bilberry (Vaccinium myrtillus L.) belongs to the Vaccinium genus, which includes blueberries (Vaccinium spp.) and cranberry (V. macrocarpon). Unlike its cultivated relatives, bilberry remains largely undomesticated, with berry harvesting almost entirely from the wild. As such, it represents an ideal target for genomic analysis, providing comparisons with the domesticated Vaccinium species. Bilberry is prized for its taste and health properties and has provided essential nutrition for Northern European indigenous populations. It contains high concentrations of phytonutrients, with perhaps the most important being the purple colored anthocyanins, found in both skin and flesh. Here, we present the first bilberry genome assembly, comprising 12 pseudochromosomes assembled using Oxford Nanopore (ONT) and Hi-C Technologies. The pseudochromosomes represent 96.6% complete BUSCO genes with an assessed LAI score of 16.3, showing a high conservation of synteny against the blueberry genome. Kmer analysis showed an unusual third peak, indicating the sequenced samples may have been from two individuals. The alternate alleles were purged so that the final assembly represents only one haplotype. A total of 36,404 genes were annotated after nearly 48% of the assembly was masked to remove repeats. To illustrate the genome quality, we describe the complex MYBA locus, and identify the key regulating MYB genes that determine anthocyanin production. The new bilberry genome builds on the genomic resources and knowledge of Vaccinium species, to help understand the genetics underpinning some of the quality attributes that breeding programs aspire to improve. The high conservation of synteny between bilberry and blueberry genomes means that comparative genome mapping can be applied to transfer knowledge about marker-trait association between these two species, as the loci involved in key characters are orthologous.


Assuntos
Vaccinium myrtillus , Antocianinas , Cromossomos , Frutas/genética , Genômica , Humanos
3.
Methods Mol Biol ; 2222: 249-262, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33301098

RESUMO

Inter-simple sequence repeat (ISSR) markers are highly polymorphic, relatively easy to develop, and inexpensive compared to other methods and have numerous applications. Importantly, the same ISSR primers can potentially be used universally across plant phylogenetic diversity. The basic technique of ISSRs is flexible and can be modified with options for implementation for a broad range of projects and budgets. Ranked in increasing order of technical demand and costs, these are manual agarose and manual polyacrylamide with silver staining and automated using fluorescently labeled primers and capillary electrophoresis. Overall manual agarose-based ISSRs are a sound, safe, easy, and low-cost method for reliably inferring plant genetic diversity. Here, we provide detailed protocols to undertake this fingerprinting method and provide guidance to the literature for the many options available for this technique.


Assuntos
Variação Genética , Genômica , Repetições de Microssatélites , Técnica de Amplificação ao Acaso de DNA Polimórfico , Código de Barras de DNA Taxonômico/métodos , Primers do DNA , Marcadores Genéticos , Genômica/métodos , Filogenia , Reação em Cadeia da Polimerase
4.
Front Plant Sci ; 11: 545, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32477384

RESUMO

Blueberries are distinguished by their purple-blue fruit color, which develops during ripening and is derived from a characteristic composition of flavonoid-derived anthocyanin pigments. The production of anthocyanins is confined to fruit skin, leaving the colorless fruit flesh devoid of these compounds. By linking accumulation patterns of phenolic metabolites with gene transcription in Northern Highbush (Vaccinium corymbosum) and Rabbiteye (Vaccinium virgatum) blueberry, we investigated factors limiting anthocyanin production in berry flesh. We find that flavonoid production was generally lower in fruit flesh compared with skin and concentrations further declined during maturation. A common set of structural genes was identified across both species, indicating that tissue-specific flavonoid biosynthesis was dependent on co-expression of multiple pathway genes and limited by the phenylpropanoid pathway in combination with CHS, F3H, and ANS as potential pathway bottlenecks. While metabolite concentrations were comparable between the blueberry genotypes when fully ripe, the anthocyanin composition was distinct and depended on the degree of hydroxylation/methoxylation of the anthocyanidin moiety in combination with genotype-specific glycosylation patterns. Co-correlation analysis of phenolic metabolites with pathway structural genes revealed characteristic isoforms of O-methyltransferases and UDP-glucose:flavonoid-3-O-glycosyltransferase that were likely to modulate anthocyanin composition. Finally, we identified candidate transcriptional regulators that were co-expressed with structural genes, including the activators MYBA, MYBPA1, and bHLH2 together with the repressor MYBC2, which suggested an interdependent role in anthocyanin regulation.

5.
New Phytol ; 223(3): 1319-1327, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30985943

RESUMO

Leaf size varies conspicuously along environmental gradients. Small leaves help plants cope with drought and frost, because of the effect of leaf size on boundary layer conductance; it is less clear what advantage large leaves confer in benign environments. We asked if large leaves give species of warm climates an advantage in seedling light interception efficiency over small-leaved species from colder environments. We measured seedling leaf, architectural and biomass distribution traits of 18 New Zealand temperate rainforest evergreens; we then used a 3-D digitiser and the Yplant program to model leaf area display and light interception. Species associated with mild climates on average had larger leaves and larger specific leaf areas (SLA) than those from cold climates, and displayed larger effective foliage areas per unit of aboveground biomass, indicating higher light interception efficiency at whole-plant level. This reflected differences in total foliage area, rather than in self-shading. Our findings advance the understanding of leaf size by showing that large leaves enable seedlings of species with highly conductive (but frost-sensitive) xylem to deploy large foliage areas without increasing self-shading. Leaf size variation along temperature gradients in humid forests may therefore reflect a trade-off between seedling light interception efficiency and susceptibility to frost.


Assuntos
Meio Ambiente , Umidade , Luz , Folhas de Planta/anatomia & histologia , Folhas de Planta/efeitos da radiação , Plântula/efeitos da radiação , Análise de Variância , Biomassa , Modelos Biológicos , Filogenia , Característica Quantitativa Herdável , Especificidade da Espécie , Temperatura , Árvores/fisiologia
6.
Front Plant Sci ; 9: 1300, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30254656

RESUMO

The Vaccinium genus in the family Ericaceae comprises many species, including the fruit-bearing blueberry, bilberry, cranberry, huckleberry, and lingonberry. Commercially, the most important are the blueberries (Vaccinium section Cyanococcus), such as Vaccinium corymbosum (northern highbush blueberry), Vaccinium virgatum (rabbiteye blueberry), and Vaccinium angustifolium (lowbush blueberry). The rising popularity of blueberries can partly be attributed to their "superfood" status, with an increasing body of evidence around human health benefits resulting from the fruit metabolites, particularly products of the phenylpropanoid pathway such as anthocyanins. Activation of anthocyanin production by R2R3-MYB transcription factors (TFs) has been characterized in many species, but despite recent studies on blueberry, cranberry, and bilberry, no MYB anthocyanin regulators have been reported for Vaccinium. Indeed, there has been conjecture that at least in bilberry, MYB TFs divergent to the usual type are involved. We report identification of MYBA from blueberry, and show through sequence analysis and functional studies that it is homologous to known anthocyanin-promoting R2R3-MYBs of subgroup 6 of the MYB superfamily. In transient assays, MYBA complemented an anthocyanin MYB mutant of Antirrhinum majus and, together with a heterologous bHLH anthocyanin regulator, activated anthocyanin production in Nicotiana benthamiana. Furthermore anthocyanin accumulation and anthocyanin structural gene expression (assayed by qPCR and RNA-seq analyses) correlated with MYBA expression, and MYBA was able to transactivate the DFR promoter from blueberry and other species. The RNA-seq data also revealed a range of other candidate genes involved in the regulation of anthocyanin production in blueberry fruit. The identification of MYBA will help to resolve the regulatory mechanism for anthocyanin pigmentation in the Vaccinium genus. The sequence information should also prove useful in developing tools for the accelerated breeding of new Vaccinium cultivars.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA