Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Micron ; 79: 1-7, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26280278

RESUMO

The physical properties of semiconductor quantum wells (QW), like (GaIn)As/GaAs, are significantly influenced by the interface morphology. In the present work, high angle annular dark field imaging in (scanning) transmission electron microscopy ((S)TEM), in combination with contrast simulation, is used to address this question at atomic resolution. The (GaIn)As QWs were grown with metal organic vapor phase epitaxy on GaAs (001) substrates under different, precisely controlled conditions. In order to be able to compare different samples, a carefully applied method to gain reliable results from high resolution STEM micrographs was used. The thickness gradient of the TEM samples, caused by sample preparation, was compensated by the intensity of group V atomic columns, where no alloying takes place. After that, the In concentration map was plotted for the investigated regions based on the intensity of the group III atomic columns. The composition maps show that the Indium distribution across the quantum well is not homogeneous. The growth temperature of the QW can greatly influence the composition fluctuation and the interface morphology, with higher growth temperature resulting in larger composition fluctuations in the QWs and slightly wider interfaces, i.e. larger In-segregation. Growth interruptions are shown to significantly homogenize the elemental depth profile especially along the (GaIn)As/GaAs interface and hence have a positive effect on interface smoothness.

2.
Antimicrob Agents Chemother ; 55(6): 2743-54, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21464247

RESUMO

MX-2401 is a semisynthetic calcium-dependent lipopeptide antibiotic (analogue of amphomycin) in preclinical development for the treatment of serious Gram-positive infections. In vitro and in vivo, MX-2401 demonstrates broad-spectrum bactericidal activity against Gram-positive organisms, including antibiotic-resistant strains. The objective of this study was to investigate the mechanism of action of MX-2401 and compare it with that of the lipopeptide daptomycin. The results indicated that although both daptomycin and MX-2401 are in the structural class of Ca²âº-dependent lipopeptide antibiotics, the latter has a different mechanism of action. Specifically, MX-2401 inhibits peptidoglycan synthesis by binding to the substrate undecaprenylphosphate (C55-P), the universal carbohydrate carrier involved in several biosynthetic pathways. This interaction resulted in inhibition, in a dose-dependent manner, of the biosynthesis of the cell wall precursors lipids I and II and the wall teichoic acid precursor lipid III, while daptomycin had no significant effect on these processes. MX-2401 induced very slow membrane depolarization that was observed only at high concentrations. Unlike daptomycin, membrane depolarization by MX-2401 did not correlate with its bactericidal activity and did not affect general membrane permeability. In contrast to daptomycin, MX-2401 had no effect on lipid flip-flop, calcein release, or membrane fusion with 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC)/1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-(1'-rac-glycerol) (sodium salt) (POPG) liposomes. MX-2401 adopts a more defined structure than daptomycin, presumably to facilitate interaction with C55-P. Mutants resistant to MX-2401 demonstrated low cross-resistance to other antibiotics. Overall, these results provided strong evidence that the mode of action of MX-2401 is unique and different from that of any of the approved antibiotics, including daptomycin.


Assuntos
Antibacterianos/farmacologia , Farmacorresistência Bacteriana , Lipopeptídeos/farmacologia , Antibacterianos/química , Membrana Celular/efeitos dos fármacos , Permeabilidade da Membrana Celular/efeitos dos fármacos , Daptomicina/química , Daptomicina/farmacologia , Humanos , Lipopeptídeos/química , Staphylococcus/efeitos dos fármacos , Staphylococcus/metabolismo , Uridina Difosfato Ácido N-Acetilmurâmico/análogos & derivados , Uridina Difosfato Ácido N-Acetilmurâmico/biossíntese , Uridina Difosfato Ácido N-Acetilmurâmico/metabolismo
3.
Antimicrob Agents Chemother ; 53(4): 1610-8, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19164139

RESUMO

Friulimicin B is a naturally occurring cyclic lipopeptide, produced by the actinomycete Actinoplanes friuliensis, with excellent activity against gram-positive pathogens, including multidrug-resistant strains. It consists of a macrocyclic decapeptide core and a lipid tail, interlinked by an exocyclic amino acid. Friulimicin is water soluble and amphiphilic, with an overall negative charge. Amphiphilicity is enhanced in the presence of Ca(2+), which is also indispensable for antimicrobial activity. Friulimicin shares these physicochemical properties with daptomycin, which is suggested to kill gram-positive bacteria through the formation of pores in the cytoplasmic membrane. In spite of the fact that friulimicin shares features of structure and potency with daptomycin, we found that friulimicin has a unique mode of action and severely affects the cell envelope of gram-positive bacteria, acting via a defined target. We found friulimicin to interrupt the cell wall precursor cycle through the formation of a Ca(2+)-dependent complex with the bactoprenol phosphate carrier C(55)-P, which is not targeted by any other antibiotic in use. Since C(55)-P also serves as a carrier in teichoic acid biosynthesis and capsule formation, it is likely that friulimicin blocks multiple pathways that are essential for a functional gram-positive cell envelope.


Assuntos
Antibacterianos/farmacologia , Parede Celular/efeitos dos fármacos , Peptídeos/farmacologia , Terpenos/metabolismo , Bacillus subtilis/efeitos dos fármacos , Bacillus subtilis/metabolismo , Parede Celular/metabolismo , Testes de Sensibilidade Microbiana , Peptídeos/metabolismo , Staphylococcus/efeitos dos fármacos , Uridina Difosfato Ácido N-Acetilmurâmico/análogos & derivados , Uridina Difosfato Ácido N-Acetilmurâmico/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...