Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Pharm ; 17(12): 4564-4571, 2020 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-33151697

RESUMO

Seeded growth rates of ritonavir in copovidone at 75% relative humidity (RH) and 50 °C were evaluated by single-particle tracking second harmonic generation (SHG) microscopy and found to be ∼3-fold slower for crystallites at the surface compared to the bulk. The shelf lives of final dosage forms containing amorphous solid dispersions (ASDs) are often dictated by the rates of active pharmaceutical ingredient crystallization. Upon exposure to elevated RH, the higher anticipated water content near the surfaces of ASDs has the potential to substantially impact nucleation and growth kinetics relative to the bulk. However, quantitative assessment of these differences in growth rates is complicated by challenges associated with discrimination of the two contributions (supersaturation and molecular mobility) in ensemble-averaged measurements. In the present study, "sandwich" materials were prepared, in which sparse populations of ritonavir single-crystalline seeds were pressed between two similar ASD films to assess bulk crystallization rates. These sandwich materials were compared and contrasted with analogously prepared "open-faced" samples, without the capping film, to assess the surface crystallization rates. Single-particle analysis by SHG microscopy time-series during in situ crystallization produced average growth rates of 3.8 µm/h for bulk columnar crystals with a particle-to-particle standard deviation of 0.9 µm/h. In addition, columnar crystal growth rates for surface particles were measured to be 1.3 µm/h and radiating crystal growth rates for surface particles were measured to be 1.0 µm/h, both with a particle-to-particle deviation of 0.4 µm/h. The observed appearance of radiating crystals upon surface seeding is attributed to reduced ritonavir solubility upon water adsorption at the interface, leading to higher defect densities in crystal growth. Despite substantial differences in crystal habit, correction of the surface growth rates by a factor of 4 from geometric effects resulted in relatively minor but statistically significant differences in the growth kinetics for the two local environments. These results are consistent, with viscosity being a relatively weak function of water absorption coupled with primarily diffusion-limited growth kinetics.


Assuntos
Excipientes/química , Ritonavir/química , Disponibilidade Biológica , Química Farmacêutica , Cristalização , Liberação Controlada de Fármacos , Estabilidade de Medicamentos , Armazenamento de Medicamentos , Ritonavir/farmacocinética , Solubilidade
2.
Mol Pharm ; 17(3): 769-776, 2020 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-31769985

RESUMO

Single-particle tracking of crystal growth performed in situ enables substantial improvements in the signal-to-noise ratio (SNR) for recovered crystal nucleation and growth rates by nonlinear optical microscopy. Second harmonic generation (SHG) is exquisitely sensitive to noncentrosymmetric crystals, including those produced by many homochiral active pharmaceutical ingredients (APIs). Accelerated stability testing at elevated temperatures and relative humidity informs design of pharmaceutical formulations. In the present work, we demonstrate reduction in the Poisson noise associated with the finite number of particles present in a given field of view through continuous monitoring during stability testing. Single-particle tracking enables recovery of crystal growth rates of individual crystallites and enables unambiguous direct detection of nucleation events. Collectively, these capabilities provide significant improvements in the signal-to-noise for nucleation and crystal growth measurements, corresponding to approximately an order of magnitude reduction in anticipated measurement time for recovery of kinetics parameters.


Assuntos
Composição de Medicamentos/métodos , Desenho de Fármacos , Hexoses/química , Pirrolidinas/química , Ritonavir/química , Dióxido de Silício/química , Compostos de Vinila/química , Coloides , Cristalização , Estabilidade de Medicamentos , Umidade , Cinética , Microscopia de Geração do Segundo Harmônico/métodos , Razão Sinal-Ruído , Solubilidade , Temperatura , Água/química
3.
Anal Chem ; 91(8): 5286-5294, 2019 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-30856314

RESUMO

A digital filter based on non-negative matrix factorization (NMF) enables blind deconvolution of temporal information from large data sets, simultaneously recovering both photon arrival times and the instrument impulse response function (IRF). In general, the measured digital signals produced by modern analytical instrumentation are convolved by the corresponding IRFs, which can complicate quantitative analyses. Common examples include photon counting (PC), chromatography, super resolution imaging, fluorescence imaging, and mass spectrometry. Scintillation counting, in particular, provides a signal-to-noise advantage in measurements of low intensity signals, but has a limited dynamic range due to pulse overlap. This limitation can complicate the interpretation of data by masking temporal and amplitude information on the underlying detected signal. Typical methods for deconvolution of the photon events require advanced knowledge of the IRF, which is not generally trivial to obtain. In this work, a sliding window approach was developed to perform NMF one pixel at a time on short segments of large (e.g., 25 million point) data sets. Using random initial guesses for the IRF, the NMF filter simultaneously recovered both the deconvolved photon arrival times and the IRF. Applying the NMF filter to the analysis of triboluminescence (TL) data traces of active pharmaceutical ingredients enabled discrimination between different hypothesized physical origins of the signal.

5.
Anal Chem ; 90(11): 6893-6898, 2018 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-29694029

RESUMO

Triboluminescence (TL) is shown to enable selective detection of trace crystallinity within nominally amorphous solid dispersions (ASDs). ASDs are increasingly used for the preparation of pharmaceutical formulations, the physical stability of which can be negatively impacted by trace crystallinity introduced during manufacturing or storage. In the present study, TL measurements of a model ASD consisting of griseofulvin in polyethylene glycol produced limits of detection of 140 ppm. Separate studies of the particle size dependence of sucrose crystals and the dependence on polymorphism in clopidogrel bisulfate particles are both consistent with a mechanism for TL closely linked to the piezoelectric response of the crystalline fraction. Whereas disordered polymeric materials cannot support piezoelectric activity, molecular crystals produced from homochiral molecules adopt crystal structures that are overwhelmingly symmetry-allowed for piezoelectricity. Consequently, TL may provide a broadly applicable and simple experimental route for sensitive detection of trace crystallinity within nominally amorphous materials.


Assuntos
Composição de Medicamentos , Medições Luminescentes , Preparações Farmacêuticas/análise , Medições Luminescentes/instrumentação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...