Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Neurosurg ; 140(1): 218-230, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37382356

RESUMO

A major goal of modern neurosurgery is the personalization of treatment to optimize or predict individual outcomes. One strategy in this regard has been to create whole-brain models of individual patients. Whole-brain modeling is a subfield of computational neuroscience that focuses on simulations of large-scale neural activity patterns across distributed brain networks. Recent advances allow for the personalization of these models by incorporating distinct connectivity architecture obtained from noninvasive neuroimaging of individual patients. Local dynamics of each brain region are simulated with neural mass models and subsequently coupled together, considering the subject's empirical structural connectome. The parameters of the model can be optimized by comparing model-generated and empirical data. The resulting personalized whole-brain models have translational potential in neurosurgery, allowing investigators to simulate the effects of virtual therapies (such as resections or brain stimulations), assess the effect of brain pathology on network dynamics, or discern epileptic networks and predict seizure propagation in silico. The information gained from these simulations can be used as clinical decision support, guiding patient-specific treatment plans. Here the authors provide an overview of the rapidly advancing field of whole-brain modeling and review the literature on neurosurgical applications of this technology.


Assuntos
Conectoma , Epilepsia , Humanos , Encéfalo/diagnóstico por imagem , Encéfalo/cirurgia , Encéfalo/patologia , Simulação por Computador , Conectoma/métodos , Neuroimagem , Rede Nervosa
2.
Artigo em Inglês | MEDLINE | ID: mdl-37979944

RESUMO

BACKGROUND: The Toronto Adolescent and Youth (TAY) Cohort Study will characterize the neurobiological trajectories of psychosis spectrum symptoms, functioning, and suicidality (i.e., suicidal thoughts and behaviors) in youth seeking mental health care. Here, we present the neuroimaging and biosample component of the protocol. We also present feasibility and quality control metrics for the baseline sample collected thus far. METHODS: The current study includes youths (ages 11-24 years) who were referred to child and youth mental health services within a large tertiary care center in Toronto, Ontario, Canada, with target recruitment of 1500 participants. Participants were offered the opportunity to provide any or all of the following: 1) 1-hour magnetic resonance imaging (MRI) scan (electroencephalography if ineligible for or declined MRI), 2) blood sample for genomic and proteomic data (or saliva if blood collection was declined or not feasible) and urine sample, and 3) heart rate recording to assess respiratory sinus arrhythmia. RESULTS: Of the first 417 participants who consented to participate between May 4, 2021, and February 2, 2023, 412 agreed to participate in the imaging and biosample protocol. Of these, 334 completed imaging, 341 provided a biosample, 338 completed respiratory sinus arrhythmia, and 316 completed all 3. Following quality control, data usability was high (MRI: T1-weighted 99%, diffusion-weighted imaging 99%, arterial spin labeling 90%, resting-state functional MRI 95%, task functional MRI 90%; electroencephalography: 83%; respiratory sinus arrhythmia: 99%). CONCLUSIONS: The high consent rates, good completion rates, and high data usability reported here demonstrate the feasibility of collecting and using brain imaging and biosamples in a large clinical cohort of youths seeking mental health care.


Assuntos
Proteômica , Transtornos Psicóticos , Criança , Humanos , Adolescente , Estudos de Coortes , Neuroimagem , Encéfalo
3.
Nat Commun ; 14(1): 7927, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38040769

RESUMO

Sleep and depression have a complex, bidirectional relationship, with sleep-associated alterations in brain dynamics and structure impacting a range of symptoms and cognitive abilities. Previous work describing these relationships has provided an incomplete picture by investigating only one or two types of sleep measures, depression, or neuroimaging modalities in parallel. We analyze the correlations between brainwide neural signatures of sleep, cognition, and depression in task and resting-state data from over 30,000 individuals from the UK Biobank and Human Connectome Project. Neural signatures of insomnia and depression are negatively correlated with those of sleep duration measured by accelerometer in the task condition but positively correlated in the resting-state condition. Our results show that resting-state neural signatures of insomnia and depression resemble that of rested wakefulness. This is further supported by our finding of hypoconnectivity in task but hyperconnectivity in resting-state data in association with insomnia and depression. These observations dispute conventional assumptions about the neurofunctional manifestations of hyper- and hypo-somnia, and may explain inconsistent findings in the literature.


Assuntos
Distúrbios do Início e da Manutenção do Sono , Humanos , Distúrbios do Início e da Manutenção do Sono/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Sono , Cognição
4.
Artigo em Inglês | MEDLINE | ID: mdl-37536567

RESUMO

BACKGROUND: Mismatch negativity reductions are among the most reliable biomarkers for schizophrenia and have been associated with increased risk for conversion to psychosis in individuals who are at clinical high risk for psychosis (CHR-P). Here, we adopted a computational approach to develop a mechanistic model of mismatch negativity reductions in CHR-P individuals and patients early in the course of schizophrenia. METHODS: Electroencephalography was recorded in 38 CHR-P individuals (15 converters), 19 patients early in the course of schizophrenia (≤5 years), and 44 healthy control participants during three different auditory oddball mismatch negativity paradigms including 10% duration, frequency, or double deviants, respectively. We modeled sensory learning with the hierarchical Gaussian filter and extracted precision-weighted prediction error trajectories from the model to assess how the expression of hierarchical prediction errors modulated electroencephalography amplitudes over sensor space and time. RESULTS: Both low-level sensory and high-level volatility precision-weighted prediction errors were altered in CHR-P individuals and patients early in the course of schizophrenia compared with healthy control participants. Moreover, low-level precision-weighted prediction errors were significantly different in CHR-P individuals who later converted to psychosis compared with nonconverters. CONCLUSIONS: Our results implicate altered processing of hierarchical prediction errors as a computational mechanism in early psychosis consistent with predictive coding accounts of psychosis. This computational model seems to capture pathophysiological mechanisms that are relevant to early psychosis and the risk for future psychosis in CHR-P individuals and may serve as predictive biomarkers and mechanistic targets for the development of novel treatments.


Assuntos
Transtornos Psicóticos , Esquizofrenia , Humanos , Eletroencefalografia , Biomarcadores
5.
Elife ; 122023 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-37083491

RESUMO

A compelling way to disentangle the complexity of the brain is to measure the effects of spatially and temporally synchronized systematic perturbations. In humans, this can be non-invasively achieved by combining transcranial magnetic stimulation (TMS) and electroencephalography (EEG). Spatiotemporally complex and long-lasting TMS-EEG evoked potential (TEP) waveforms are believed to result from recurrent, re-entrant activity that propagates broadly across multiple cortical and subcortical regions, dispersing from and later re-converging on, the primary stimulation site. However, if we loosely understand the TEP of a TMS-stimulated region as the impulse response function of a noisy underdamped harmonic oscillator, then multiple later activity components (waveform peaks) should be expected even for an isolated network node in the complete absence of recurrent inputs. Thus emerges a critically important question for basic and clinical research on human brain dynamics: what parts of the TEP are due to purely local dynamics, what parts are due to reverberant, re-entrant network activity, and how can we distinguish between the two? To disentangle this, we used source-localized TMS-EEG analyses and whole-brain connectome-based computational modelling. Results indicated that recurrent network feedback begins to drive TEP responses from 100 ms post-stimulation, with earlier TEP components being attributable to local reverberatory activity within the stimulated region. Subject-specific estimation of neurophysiological parameters additionally indicated an important role for inhibitory GABAergic neural populations in scaling cortical excitability levels, as reflected in TEP waveform characteristics. The novel discoveries and new software technologies introduced here should be of broad utility in basic and clinical neuroscience research.


Assuntos
Conectoma , Estimulação Magnética Transcraniana , Humanos , Estimulação Magnética Transcraniana/métodos , Eletroencefalografia/métodos , Potenciais Evocados/fisiologia , Encéfalo/fisiologia , Conectoma/métodos
6.
PLoS Comput Biol ; 19(4): e1010986, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37036854

RESUMO

Reduced cortical inhibition by somatostatin-expressing (SST) interneurons has been strongly associated with treatment-resistant depression. However, due to technical limitations it is impossible to establish experimentally in humans whether the effects of reduced SST interneuron inhibition on microcircuit activity have signatures detectable in clinically-relevant brain signals such as electroencephalography (EEG). To overcome these limitations, we simulated resting-state activity and EEG using detailed models of human cortical microcircuits with normal (healthy) or reduced SST interneuron inhibition (depression), and found that depression microcircuits exhibited increased theta, alpha and low beta power (4-16 Hz). The changes in depression involved a combination of an aperiodic broadband and periodic theta components. We then demonstrated the specificity of the EEG signatures of reduced SST interneuron inhibition by showing they were distinct from those corresponding to reduced parvalbumin-expressing (PV) interneuron inhibition. Our study thus links SST interneuron inhibition level to distinct features in EEG simulated from detailed human microcircuits, which can serve to better identify mechanistic subtypes of depression using EEG, and non-invasively monitor modulation of cortical inhibition.


Assuntos
Encéfalo , Depressão , Humanos , Biomarcadores , Eletroencefalografia , Interneurônios/fisiologia
7.
Biol Psychiatry ; 94(6): 454-465, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37084864

RESUMO

BACKGROUND: Intermittent theta burst stimulation (iTBS) targeting the left dorsolateral prefrontal cortex is effective for treatment-resistant depression, but the effects of iTBS on neurophysiological markers remain unclear. Here, we indexed transcranial magnetic stimulation-electroencephalography (TMS-EEG) markers, specifically, the N45 and N100 amplitudes, at baseline and post-iTBS, comparing separated and contiguous iTBS schedules. TMS-EEG markers were also compared between iTBS responders and nonresponders. METHODS: TMS-EEG was analyzed from a triple-blind 1:1 randomized trial for treatment-resistant depression, comparing a separated (54-minute interval) and contiguous (0-minute interval) schedule of 2 × 600-pulse iTBS for 30 treatments. Participants underwent TMS-EEG over the left dorsolateral prefrontal cortex at baseline and posttreatment. One hundred fourteen participants had usable TMS-EEG at baseline, and 98 at posttreatment. TMS-evoked potential components (N45, N100) were examined via global mean field analysis. RESULTS: The N100 amplitude decreased from baseline to posttreatment, regardless of the treatment group (F1,106 = 5.20, p = .02). There were no changes in N45 amplitude in either treatment group. In responders, the N100 amplitude decreased after iTBS (F1,102 = 11.30, p = .001, pcorrected = .0004). Responders showed higher posttreatment N45 amplitude than nonresponders (F1,94 = 4.11, p = .045, pcorrected = .016). Higher baseline N100 amplitude predicted lower post-iTBS depression scores (F4,106 = 6.28, p = .00014). CONCLUSIONS: These results provide further evidence for an association between the neurophysiological effects of iTBS and treatment efficacy in treatment-resistant depression. Future studies are needed to test the predictive potential for clinical applications of TMS-EEG markers.


Assuntos
Depressão , Estimulação Magnética Transcraniana , Humanos , Estimulação Magnética Transcraniana/métodos , Córtex Pré-Frontal/fisiologia , Eletroencefalografia , Potenciais Evocados/fisiologia
9.
J Affect Disord ; 318: 167-174, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36055538

RESUMO

BACKGROUND AND OBJECTIVE: Repetitive transcranial magnetic stimulation (rTMS) is an effective and safe treatment for major depressive disorder (MDD). rTMS is in need of a reliable biomarker of treatment response. High frequency (HF) dorsolateral prefrontal cortex (DLPFC) rTMS has been reported to induce significant changes in the cardiac activity of MDD patients. Low frequency DLPFC rTMS has many advantages over HF-DLPFC rTMS and thus this study aims to further investigate the effect of low frequency 1 Hz right hemisphere (R)-DLPFC rTMS on the cardiac activity of MDD patients, as well as the potential of using electrocardiogram (ECG) parameters as biomarkers of treatment outcome. METHODS: Baseline ECG sessions were performed for 19 MDD patients. All patients then underwent 40 sessions of accelerated 1 Hz R-DLPFC rTMS one week after the baseline session. RESULTS: Heart rate (HR) significantly decreased from the resting period to the first and third minute of the 1 Hz R-DLPFC rTMS period. Resting HR was found to have a significant negative association with treatment outcome. Prior to Bonferroni correction, HR during stimulation and the degree of rTMS-induced HR reduction were significantly negatively associated with treatment outcome. No significant changes were observed for the heart rate variability (HRV) parameters. LIMITATIONS: Sample size (n = 19); the use of electroencephalography equipment for ECG; lack of respiration monitoring; relatively short recording duration for HRV parameters. CONCLUSION: This novel study provides further preliminary evidence that ECG may be utilized as a biomarker of rTMS treatment response in MDD. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT04376697.


Assuntos
Transtorno Depressivo Maior , Estimulação Magnética Transcraniana , Biomarcadores , Depressão , Transtorno Depressivo Maior/terapia , Humanos , Córtex Pré-Frontal , Resultado do Tratamento
10.
Front Psychiatry ; 13: 902089, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35815008

RESUMO

Transcranial magnetic stimulation (TMS) is an emerging alternative to existing treatments for major depressive disorder (MDD). The effects of TMS on both brain physiology and therapeutic outcomes are known to be highly variable from subject to subject, however. Proposed reasons for this variability include individual differences in neurophysiology, in cortical geometry, and in brain connectivity. Standard approaches to TMS target site definition tend to focus on coordinates or landmarks within the individual brain regions implicated in MDD, such as the dorsolateral prefrontal cortex (dlPFC) and orbitofrontal cortex (OFC). Additionally considering the network connectivity of these sites (i.e., the wider set of brain regions that may be mono- or poly-synaptically activated by TMS stimulation) has the potential to improve subject-specificity of TMS targeting and, in turn, improve treatment outcomes. In this study, we looked at the functional connectivity (FC) of dlPFC and OFC TMS targets, based on induced electrical field (E-field) maps, estimated using the SimNIBS library. We hypothesized that individual differences in spontaneous functional brain dynamics would contribute more to downstream network engagement than individual differences in cortical geometry (i.e., E-field variability). We generated individualized E-field maps on the cortical surface for 121 subjects (67 female) from the Human Connectome Project database using tetrahedral head models generated from T1- and T2-weighted MR images. F3 and Fp1 electrode positions were used to target the left dlPFC and left OFC, respectively. We analyzed inter-subject variability in the shape and location of these TMS target E-field patterns, their FC, and the major functional networks to which they belong. Our results revealed the key differences in TMS target FC between the dlPFC and OFC, and also how this connectivity varies across subjects. Three major functional networks were targeted across the dlPFC and OFC: the ventral attention, fronto-parietal and default-mode networks in the dlPFC, and the fronto-parietal and default mode networks in the OFC. Inter-subject variability in cortical geometry and in FC was high. Our analyses showed that the use of normative neuroimaging reference data (group-average or representative FC and subject E-field) allows prediction of which networks are targeted, but fails to accurately quantify the relative loading of TMS targeting on each of the principal networks. Our results characterize the FC patterns of canonical therapeutic TMS targets, and the key dimensions of their variability across subjects. The high inter-individual variability in cortical geometry and FC, leading to high variability in distributions of targeted brain networks, may account for the high levels of variability in physiological and therapeutic TMS outcomes. These insights should, we hope, prove useful as part of the broader effort by the psychiatry, neurology, and neuroimaging communities to help improve and refine TMS therapy, through a better understanding of the technology and its neurophysiological effects.

11.
Adv Exp Med Biol ; 1359: 313-355, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35471545

RESUMO

Whole-Brain Modelling is a scientific field with a short history and a long past. Its various disciplinary roots and conceptual ingredients extend back to as early as the 1940s. It was not until the late 2000s, however, that a nascent paradigm emerged in roughly its current form-concurrently, and in many ways joined at the hip, with its sister field of macro-connectomics. This period saw a handful of seminal papers authored by a certain motley crew of notable theoretical and cognitive neuroscientists, which have served to define much of the landscape of whole-brain modelling as it stands at the start of the 2020s. At the same time, the field has over the past decade expanded in a dozen or more fascinating new methodological, theoretical, and clinical directions. In this chapter we offer a potted Past, Present, and Future of whole-brain modelling, noting what we take to be some of its greatest successes, hardest challenges, and most exciting opportunities.


Assuntos
Encéfalo , Conectoma
12.
Cell Rep ; 38(2): 110232, 2022 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-35021088

RESUMO

Cortical processing depends on finely tuned excitatory and inhibitory connections in neuronal microcircuits. Reduced inhibition by somatostatin-expressing interneurons is a key component of altered inhibition associated with treatment-resistant major depressive disorder (depression), which is implicated in cognitive deficits and rumination, but the link remains to be better established mechanistically in humans. Here we test the effect of reduced somatostatin interneuron-mediated inhibition on cortical processing in human neuronal microcircuits using a data-driven computational approach. We integrate human cellular, circuit, and gene expression data to generate detailed models of human cortical microcircuits in health and depression. We simulate microcircuit baseline and response activity and find a reduced signal-to-noise ratio and increased false/failed detection of stimuli due to a higher baseline activity in depression. We thus apply models of human cortical microcircuits to demonstrate mechanistically how reduced inhibition impairs cortical processing in depression, providing quantitative links between altered inhibition and cognitive deficits.


Assuntos
Depressão/fisiopatologia , Interneurônios/metabolismo , Somatostatina/metabolismo , Disfunção Cognitiva/metabolismo , Biologia Computacional/métodos , Bases de Dados Factuais , Depressão/metabolismo , Transtorno Depressivo Maior/metabolismo , Transtorno Depressivo Maior/fisiopatologia , Transtorno Depressivo Resistente a Tratamento/metabolismo , Transtorno Depressivo Resistente a Tratamento/fisiopatologia , Feminino , Humanos , Masculino , Modelos Teóricos , Rede Nervosa/fisiologia , Inibição Neural , Neurônios/fisiologia , Somatostatina/genética
13.
Gigascience ; 10(8)2021 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-34414422

RESUMO

As the global health crisis unfolded, many academic conferences moved online in 2020. This move has been hailed as a positive step towards inclusivity in its attenuation of economic, physical, and legal barriers and effectively enabled many individuals from groups that have traditionally been underrepresented to join and participate. A number of studies have outlined how moving online made it possible to gather a more global community and has increased opportunities for individuals with various constraints, e.g., caregiving responsibilities. Yet, the mere existence of online conferences is no guarantee that everyone can attend and participate meaningfully. In fact, many elements of an online conference are still significant barriers to truly diverse participation: the tools used can be inaccessible for some individuals; the scheduling choices can favour some geographical locations; the set-up of the conference can provide more visibility to well-established researchers and reduce opportunities for early-career researchers. While acknowledging the benefits of an online setting, especially for individuals who have traditionally been underrepresented or excluded, we recognize that fostering social justice requires inclusivity to actively be centered in every aspect of online conference design. Here, we draw from the literature and from our own experiences to identify practices that purposefully encourage a diverse community to attend, participate in, and lead online conferences. Reflecting on how to design more inclusive online events is especially important as multiple scientific organizations have announced that they will continue offering an online version of their event when in-person conferences can resume.

14.
PLoS Comput Biol ; 16(12): e1008485, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33338032

RESUMO

The increased democratization of the creation, implementation, and attendance of academic conferences has been a serendipitous benefit of the movement toward virtual meetings. The Coronavirus Disease 2019 (COVID-19) pandemic has accelerated the transition to online conferences and, in parallel, their democratization, by necessity. This manifests not just in the mitigation of barriers to attending traditional physical conferences but also in the presentation of new, and more importantly attainable, opportunities for young scientists to carve out a niche in the landscape of academic meetings. Here, we describe an early "proof of principle" of this democratizing power via our experience organizing the Canadian Computational Neuroscience Spotlight (CCNS; crowdcast.io/e/CCNS), a free 2-day virtual meeting that was built entirely amid the pandemic using only virtual tools. While our experience was unique considering the obstacles faced in creating a conference during a pandemic, this was not the only factor differentiating both our experience and the resulting meeting from other contemporary online conferences. Specifically, CCNS was crafted entirely by early career researchers (ECRs) without any sponsors or partners, advertised primarily using social media and "word of mouth," and designed specifically to highlight and engage trainees. From this experience, we have distilled "10 simple rules" as a blueprint for the design of new virtual academic meetings, especially in the absence of institutional support or partnerships, in this unprecedented environment. By highlighting the lessons learned in implementing our meeting under these arduous circumstances, we hope to encourage other young scientists to embrace this challenge, which would serve as a critical next step in further democratizing academic meetings.


Assuntos
Neurociências/educação , Neurociências/tendências , Mídias Sociais , Telecomunicações , Encéfalo/patologia , COVID-19 , Canadá , Biologia Computacional , Congressos como Assunto , Humanos , Cooperação Internacional , Internet , Oscilometria , Pandemias , Universidades
15.
Proc Natl Acad Sci U S A ; 117(24): 13227-13237, 2020 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-32482855

RESUMO

Communication and oscillatory synchrony between distributed neural populations are believed to play a key role in multiple cognitive and neural functions. These interactions are mediated by long-range myelinated axonal fiber bundles, collectively termed as white matter. While traditionally considered to be static after development, white matter properties have been shown to change in an activity-dependent way through learning and behavior-a phenomenon known as white matter plasticity. In the central nervous system, this plasticity stems from oligodendroglia, which form myelin sheaths to regulate the conduction of nerve impulses across the brain, hence critically impacting neural communication. We here shift the focus from neural to glial contribution to brain synchronization and examine the impact of adaptive, activity-dependent changes in conduction velocity on the large-scale phase synchronization of neural oscillators. Using a network model based on primate large-scale white matter neuroanatomy, our computational and mathematical results show that such plasticity endows white matter with self-organizing properties, where conduction delay statistics are autonomously adjusted to ensure efficient neural communication. Our analysis shows that this mechanism stabilizes oscillatory neural activity across a wide range of connectivity gain and frequency bands, making phase-locked states more resilient to damage as reflected by diffuse decreases in connectivity. Critically, our work suggests that adaptive myelination may be a mechanism that enables brain networks with a means of temporal self-organization, resilience, and homeostasis.


Assuntos
Sincronização de Fases em Eletroencefalografia/fisiologia , Bainha de Mielina/fisiologia , Rede Nervosa/fisiologia , Plasticidade Neuronal/fisiologia , Animais , Encéfalo/fisiologia , Conectoma , Modelos Neurológicos , Rede Nervosa/citologia , Condução Nervosa/fisiologia , Neuroglia/fisiologia , Primatas , Substância Branca/citologia , Substância Branca/fisiologia
16.
Front Comput Neurosci ; 14: 575143, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33408622

RESUMO

Rhythmic activity in the brain fluctuates with behaviour and cognitive state, through a combination of coexisting and interacting frequencies. At large spatial scales such as those studied in human M/EEG, measured oscillatory dynamics are believed to arise primarily from a combination of cortical (intracolumnar) and corticothalamic rhythmogenic mechanisms. Whilst considerable progress has been made in characterizing these two types of neural circuit separately, relatively little work has been done that attempts to unify them into a single consistent picture. This is the aim of the present paper. We present and examine a whole-brain, connectome-based neural mass model with detailed long-range cortico-cortical connectivity and strong, recurrent corticothalamic circuitry. This system reproduces a variety of known features of human M/EEG recordings, including spectral peaks at canonical frequencies, and functional connectivity structure that is shaped by the underlying anatomical connectivity. Importantly, our model is able to capture state- (e.g., idling/active) dependent fluctuations in oscillatory activity and the coexistence of multiple oscillatory phenomena, as well as frequency-specific modulation of functional connectivity. We find that increasing the level of sensory drive to the thalamus triggers a suppression of the dominant low frequency rhythms generated by corticothalamic loops, and subsequent disinhibition of higher frequency endogenous rhythmic behaviour of intracolumnar microcircuits. These combine to yield simultaneous decreases in lower frequency and increases in higher frequency components of the M/EEG power spectrum during states of high sensory or cognitive drive. Building on this, we also explored the effect of pulsatile brain stimulation on ongoing oscillatory activity, and evaluated the impact of coexistent frequencies and state-dependent fluctuations on the response of cortical networks. Our results provide new insight into the role played by cortical and corticothalamic circuits in shaping intrinsic brain rhythms, and suggest new directions for brain stimulation therapies aimed at state-and frequency-specific control of oscillatory brain activity.

17.
J Neurosci ; 38(45): 9658-9667, 2018 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-30249801

RESUMO

The unique mapping of structural brain connectivity (SC) and functional brain connectivity (FC) on cognition is currently not well understood. It is not clear whether cognition is mapped via a global connectome pattern or instead is underpinned by several sets of distributed connectivity patterns. Moreover, we also do not know whether the spatial distributions of SC and FC that underlie cognition are overlapping or distinct. Here, we study the relationship between SC and FC and an array of psychological tasks in 609 subjects (males, 269; females, 340) from the Human Connectome Project. We identified several sets of connections that each uniquely map onto cognitive function. We found a small number of distributed SCs and a larger set of corticocortical and corticosubcortical FCs that express this association. Importantly, the SC and FC each show unique and distinct patterns of variance across subjects as they relate to cognition. The results suggest that a complete understanding of connectome underpinnings of cognition calls for a combination of the two modalities.SIGNIFICANCE STATEMENT Structural connectivity (SC), the physical white-matter inter-regional pathways in the brain, and functional connectivity (FC), the temporal coactivations between the activity of the brain regions, have each been studied extensively. Little is known, however, about the distribution of variance in connections as they relate to cognition. Here, in a large sample of subjects (N = 609), we showed that two sets of brain-behavior patterns capture the correlations between SC and FC with a wide range of cognitive tasks, respectively. These brain-behavior patterns reveal distinct sets of connections within the SC and the FC network and provide new evidence that SC and FC each provide unique information for cognition.


Assuntos
Mapeamento Encefálico/métodos , Córtex Cerebral/fisiologia , Cognição/fisiologia , Conectoma/métodos , Rede Nervosa/fisiologia , Análise de Componente Principal/métodos , Adulto , Córtex Cerebral/diagnóstico por imagem , Feminino , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Rede Nervosa/diagnóstico por imagem , Distribuição Aleatória , Adulto Jovem
18.
Front Neurosci ; 12: 376, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29997467

RESUMO

In the past decade, there has been a surge of interest in using patterned brain stimulation to manipulate cortical oscillations, in both experimental and clinical settings. But the relationship between stimulation waveform and its impact on ongoing oscillations remains poorly understood and severely restrains the development of new paradigms. To address some aspects of this intricate problem, we combine computational and mathematical approaches, providing new insights into the influence of waveform of both low and high-frequency stimuli on synchronous neural activity. Using a cellular-based cortical microcircuit network model, we performed numerical simulations to test the influence of different waveforms on ongoing alpha oscillations, and derived a mean-field description of stimulation-driven dynamics to better understand the observed responses. Our analysis shows that high-frequency periodic stimulation translates into an effective transformation of the neurons' response function, leading to waveform-dependent changes in oscillatory dynamics and resting state activity. Moreover, we found that randomly fluctuating stimulation linearizes the neuron response function while constant input moves its activation threshold. Taken together, our findings establish a new theoretical framework in which stimulation waveforms impact neural systems at the population-scale through non-linear interactions.

20.
Cereb Cortex ; 23(1): 139-47, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22275482

RESUMO

The core of human language, which differentiates it from the communicative abilities of other species, is the set of combinatorial operations called syntax. For over a century researchers have attempted to understand how this essential function is organized in the brain. Here, we combine behavioral and neuroimaging methods, with left hemisphere-damaged patients and healthy controls, to identify the pathways connecting the brain regions involved in syntactic processing. In a previous functional magnetic resonance imaging study (Tyler LK, Wright P, Randall B, Marslen-Wilson WD, Stamatakis EA. 2010b. Reorganization of syntactic processing following left-hemisphere brain damage: does right-hemisphere activity preserve function? Brain. 133(11):3396-3408.), we established that regions of left inferior frontal cortex and left posterior middle temporal cortex were activated during syntactic processing. These clusters were used here as seeds for probabilistic tractography analyses in patients and controls, allowing us to delineate, and measure the integrity of, the white matter tracts connecting the frontal and temporal regions active for syntax. We found that structural disconnection in either of 2 fiber bundles--the arcuate fasciculus or the extreme capsule fiber system--was associated with syntactic impairment in patients. The results demonstrate the causal role in syntactic analysis of these 2 major left hemisphere fiber bundles--challenging existing views about their role in language functions and providing a new basis for future research in this key area of human cognition.


Assuntos
Cognição , Conectoma/métodos , Lobo Frontal/fisiopatologia , Transtornos da Linguagem/fisiopatologia , Rede Nervosa/fisiopatologia , Semântica , Lobo Temporal/fisiopatologia , Adulto , Idoso , Mapeamento Encefálico , Feminino , Lateralidade Funcional , Humanos , Masculino , Pessoa de Meia-Idade , Vias Neurais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...