Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Physiol ; 12: 711041, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34421653

RESUMO

The central site(s) mediating the cardiovascular actions of the apelin-apelin receptor (APJ) system remains a major question. We hypothesized that the sensory circumventricular organs (CVOs), interfacing between the circulation and deeper brain structures, are sites where circulating apelin acts as a signal in the central nervous system to decrease blood pressure (BP). We show that APJ gene (aplnr) expression was elevated in the CVOs of spontaneously hypertensive rats (SHRs) compared to normotensive Wistar Kyoto (WKY) controls, and that there was a greater mean arterial BP (MABP) decrease following microinjection of [Pyr1]apelin-13 to the CVOs of SHRs compared to WKY rats. Lentiviral APJ-specific-shRNA (LV-APJ-shRNA) was used to knockdown aplnr expression, both collectively in three CVOs and discretely in individual CVOs, of rats implanted with radiotelemeters to measure arterial pressure. LV-APJ-shRNA-injection decreased aplnr expression in the CVOs and abolished MABP responses to microinjection of [Pyr1]apelin-13. Chronic knockdown of aplnr in any of the CVOs, collectively or individually, did not affect basal MABP in SHR or WKY rats. Moreover, knockdown of aplnr in any of the CVOs individually did not affect the depressor response to systemic [Pyr1]apelin-13. By contrast, multiple knockdown of aplnr in the three CVOs reduced acute cardiovascular responses to peripheral [Pyr1]apelin-13 administration in SHR but not WKY rats. These results suggest that endogenous APJ activity in the CVOs has no effect on basal BP but that functional APJ in the CVOs is required for an intact cardiovascular response to peripherally administered apelin in the SHR.

2.
PLoS One ; 15(4): e0231844, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32315363

RESUMO

The vascular organ of the lamina terminalis, subfornical organ (SFO), and area postrema comprise the sensory circumventricular organs (CVO) which are central structures that lie outside the blood brain barrier and are thought to provide an interface between peripherally circulating signals and the brain through their projections to central autonomic structures. The SFO expresses mRNA for the G protein-coupled apelin receptor (APJ, gene name aplnr) and exogenous microinjection of the neuropeptide apelin (apln) to the SFO elicits a depressor effect. Here we investigated the expression and cellular distribution of aplnr, apln and the recently described ligand apela (apela) in the CVOs and investigated whether differences in the levels of expression of apelinergic gene transcripts in these regions might underlie the chronic elevated blood pressure seen in hypertension. We carried out multiplex in situ hybridization histochemistry on CVO tissue sections from spontaneously hypertensive rats (SHR) and normotensive Wistar Kyoto (WKY) controls. Confocal immunofluorescent images indicated strong aplnr expression, with lower levels of apln and modest apela expression, in the CVOs of both WKY rats and SHRs, in both neurons and glia. The expression level of aplnr transcripts was increased in the SFO of SHRs compared to WKY rats. Our data may highlight a potential dysfunction in the communication between CVOs and downstream signalling pathways in SHRs, which may contribute to its different phenotype/s.


Assuntos
Receptores de Apelina/metabolismo , Órgão Subfornical/metabolismo , Animais , Apelina/metabolismo , Hipertensão/metabolismo , Hipertensão/patologia , Hibridização in Situ Fluorescente , Masculino , Neurônios/metabolismo , Neurônios/patologia , Ratos , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY , Órgão Subfornical/patologia , Regulação para Cima
3.
Front Physiol ; 9: 1488, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30459635

RESUMO

Dysfunction of the apelinergic system, comprised of the neuropeptide apelin mediating its effects via the G protein-coupled apelin receptor (APJ), may underlie the onset of cardiovascular disease such as hypertension. Apelin expression is increased in the rostral ventrolateral medulla (RVLM) in spontaneously hypertensive rats (SHRs) compared to Wistar-Kyoto (WKY) normotensive rats, however, evidence that the apelinergic system chronically influences mean arterial blood pressure (MABP) under pathophysiological conditions remains to be established. In this study we investigated, in conscious unrestrained rats, whether APJ contributes to MABP and sympathetic vasomotor tone in the progression of two models of hypertension - SHR and L-NAME-treated rats - and whether APJ contributes to the development of hypertension in pre-hypertensive SHR. In SHR we showed that APJ gene (aplnr) expression was elevated in the RVLM, and there was a greater MABP increase following microinjection of [Pyr1]apelin-13 to the RVLM of SHR compared to WKY rats. Bilateral microinjection of a lentiviral APJ-specific-shRNA construct into the RVLM of WKY, SHR, and L-NAME-treated rats, chronically implanted with radiotelemeters to measure MABP, decreased aplnr expression in the RVLM and abolished acute [Pyr1]apelin-13-induced increases in MABP. However, chronic knockdown of aplnr in the RVLM did not affect MABP in either SHR or L-NAME-treated rats. Moreover, knockdown of aplnr in the RVLM of prehypertensive SHR did not protect against the development of hypertension. These results show that endogenous apelin, acting via APJ, is not involved in the genesis or maintenance of hypertension in either animal model used in this study.

4.
PLoS One ; 12(8): e0183094, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28817612

RESUMO

Apelin binds to the G protein-coupled apelin receptor (APJ; gene name aplnr) to modulate diverse physiological systems including cardiovascular function, and hydromineral and metabolic balance. Recently a second endogenous ligand for APJ, named apela, has been discovered. We confirm that apela activates signal transduction pathways (ERK activation) in cells expressing the cloned rat APJ. Previous studies suggest that exogenous apela is diuretic, attributable wholly or in part to an action on renal APJ. Thus far the cellular distribution of apela in the kidney has not been reported. We have utilized in situ hybridization histochemistry to reveal strong apela labelling in the inner medulla (IM), with lower levels observed in the inner stripe of the outer medulla (ISOM), of rat and mouse kidneys. This contrasts with renal aplnr expression where the converse is apparent, with intense labelling in the ISOM (consistent with vasa recta labelling) and low-moderate hybridization in the IM, in addition to labelling of glomeruli. Apelin is found in sparsely distributed cells amongst more prevalent aplnr-labelled cells in extra-tubular regions of the medulla. This expression profile is supported by RNA-Seq data that shows that apela, but not apelin or aplnr, is highly expressed in microdissected rat kidney tubules. If endogenous tubular apela promotes diuresis in the kidney it could conceivably do this by interacting with APJ in vasculature, or via an unknown receptor in the tubules. The comparative distribution of apela, apelin and aplnr in the rodent kidney lays the foundation for future work on how the renal apelinergic system interacts.


Assuntos
Adipocinas/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Rim/metabolismo , Animais , Apelina , Células CHO , Cricetinae , Cricetulus , Rim/fisiologia , Masculino , Camundongos , Ratos
5.
J Physiol ; 595(11): 3303-3318, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28255983

RESUMO

KEY POINTS: Dysfunctions in CNS regulation of arterial blood pressure lead to an increase in sympathetic nerve activity that participates in the pathogenesis of hypertension. The apelin-apelin receptor system affects arterial blood pressure homeostasis; however, the central mechanisms underlying apelin-mediated changes in sympathetic nerve activity and blood pressure have not been clarified. We explored the mechanisms involved in the regulation of [Pyr1 ]apelin-13-mediated cardiovascular control within the rostral ventrolateral medulla (RVLM) using selective receptor antagonists. We show that [Pyr1 ]apelin-13 acts as a modulating neurotransmitter in the normotensive RVLM to affect vascular tone through interaction with the vasopressin V1a receptor but that [Pyr1 ]apelin-13-induced sympathoexcitation is independent of angiotensin II receptor type 1, oxytocin, ionotropic glutamate and GABAA receptors. Our data confirm a role for the apelin peptide system in cardiovascular regulation at the level of the RVLM and highlight that this system is a possible potential therapeutic target for the treatment of hypertension. ABSTRACT: Apelin is a ubiquitous peptide that can elevate arterial blood pressure (ABP) yet understanding of the mechanisms involved remain incomplete. Bilateral microinjection of [Pyr1 ]apelin-13 into the rostral ventrolateral medulla (RVLM), a major source of sympathoexcitatory neurones, increases ABP and sympathetic nerve activity. We aimed to investigate the potential involvement of neurotransmitter systems through which the apelin pressor response may occur within the RVLM. Adult male Wistar rats were anaesthetized and ABP was monitored via a femoral arterial catheter. Bilateral RVLM microinjection of [Pyr1 ]apelin-13 significantly increased ABP (9 ± 1 mmHg) compared to saline (-1 ± 2mmHg; P < 0.001), which was blocked by pretreatment with the apelin receptor antagonist, F13A (0 ± 1 mmHg; P < 0.01). The rise in ABP was associated with an increase in the low frequency spectra of systolic BP (13.9 ± 4.3% total power; P < 0.001), indicative of sympathetic vasomotor activation. The [Pyr1 ]apelin-13-mediated pressor response and the increased low frequency spectra of systolic BP response were fully maintained despite RVLM pretreatment with the angiotensin II type 1 receptor antagonist losartan, the oxytocin receptor antagonist desGly-NH2 , d(CH2 )5 [D-Tyr2 ,Thr4 ]OVT, the ionotropic glutamate receptor antagonist kynurenate or the GABAA antagonist bicuculline (P > 0.05). By contrast, the [Pyr1 ]apelin-13 induced pressor and sympathoexcitatory effects were abolished by pretreatment of the RVLM with the vasopressin V1a receptor antagonist, SR 49059 (-1 ± 1 mmHg; 1.1 ± 1.1% total power, respectively; P < 0.001). These findings suggest that the pressor action of [Pyr1 ]apelin-13 in the RVLM of normotensive rats is not mediated via angiotensin II type 1 receptor, oxytocin, ionotropic glutamate or GABAA receptors but instead involves a close relationship with the neuropeptide modulator vasopressin.


Assuntos
Hipertensão/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Bulbo/metabolismo , Receptores de Vasopressinas/metabolismo , Animais , Antagonistas dos Receptores de Hormônios Antidiuréticos/farmacologia , Receptores de Apelina/antagonistas & inibidores , Pressão Sanguínea/efeitos dos fármacos , Hipertensão/fisiopatologia , Masculino , Bulbo/fisiologia , Ratos , Ratos Wistar
6.
Horm Behav ; 68: 91-102, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25200200

RESUMO

This article is part of a Special Issue "Chemosignals and Reproduction". A rich variety of chemosignals have been identified that influence mammalian behaviour, including peptides, proteins and volatiles. Many of these elicit innate effects acting either as pheromones within species or allelochemicals between species. However, even innate pheromonal responses in mammals are not as hard-wired as the original definition of the term would suggest. Many, if not most mammalian pheromonal responses are only elicited in certain behavioural or physiological contexts. Furthermore, certain pheromones are themselves rewarding and act as unconditioned stimuli to link non-pheromonal stimuli to the pheromonal response, via associative learning. The medial amygdala, has emerged as a potential site for this convergence by which learned chemosensory input is able to gain control over innately-driven output circuits. The medial amygdala is also an important site for associating social chemosensory information that enables recognition of conspecifics and heterospecifics by association of their complex chemosensory signatures both within and across olfactory chemosensory systems. Learning can also influence pheromonal responses more directly to adapt them to changing physiological and behavioural context. Neuromodulators such as noradrenaline and oxytocin can plasticise neural circuits to gate transmission of chemosensory information. More recent evidence points to a role for neurogenesis in this adaptation, both at the peripheral level of the sensory neurons and via the incorporation of new neurons into existing olfactory bulb circuits. The emerging picture is of integrated and flexible responses to chemosignals that adapt them to the environmental and physiological context in which they occur.


Assuntos
Aprendizagem/fisiologia , Mamíferos/fisiologia , Neurogênese/fisiologia , Neurotransmissores/fisiologia , Feromônios/fisiologia , Animais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...