Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
Clin Genet ; 105(1): 87-91, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37619988

RESUMO

Skeletal ciliopathies are a heterogenous group of congenital disorders characterized by multiple internal abnormalities, and distinct radiographic presentation. Pathogenic variants in at least 30 cilia genes are known to cause skeletal ciliopathies. Here we report a fetus with an atypical skeletal ciliopathy phenotype and compound heterozygous variants in the RAB34 gene. The affected fetus had multiple malformations, including posterior neck edema, micrognathia, low-set and small ears, auricular hypoplasia, cleft lip and palate, short extremities, and a combination of rarely occurring pre- and postaxial polydactyly. Genome sequencing identified compound heterozygous variants in the RAB34 gene: maternal c.254T>C, p.(Ile85Thr), and paternal c.691C>T, p.(Arg231*) variants. Only the paternal variant was present in the unaffected sibling. Evidence in the literature indicated that Rab34-/- mice displayed a ciliopathy phenotype with cleft palate and polydactyly. These features were consistent with malformations detected in our patient supporting the pathogenicity of the identified RAB34 variants. Overall, this case report further expands genetic landscape of human ciliopathy syndromes and suggests RAB34 as a candidate gene for skeletal ciliopathies.


Assuntos
Anormalidades Múltiplas , Ciliopatias , Fenda Labial , Fissura Palatina , Polidactilia , Humanos , Animais , Camundongos , Fissura Palatina/diagnóstico por imagem , Fissura Palatina/genética , Ciliopatias/diagnóstico por imagem , Ciliopatias/genética , Ciliopatias/patologia , Polidactilia/genética , Anormalidades Múltiplas/genética , Síndrome , Proteínas rab de Ligação ao GTP/genética
2.
NPJ Genom Med ; 8(1): 39, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37993442

RESUMO

Spondyloepimetaphyseal dysplasia with severe short stature, RPL13-related (SEMD-RPL13), MIM#618728), is a rare autosomal dominant disorder characterized by short stature and skeletal changes such as mild spondylar and epimetaphyseal dysplasia affecting primarily the lower limbs. The genetic cause was first reported in 2019 by Le Caignec et al., and six disease-causing variants in the gene coding for a ribosomal protein, RPL13 (NM_000977.3) have been identified to date. This study presents clinical and radiographic data from 12 affected individuals aged 2-64 years from seven unrelated families, showing highly variable manifestations. The affected individuals showed a range from mild to severe short stature, retaining the same radiographic pattern of spondylar- and epi-metaphyseal dysplasia, but with varying severity of the hip and knee deformities. Two new missense variants, c.548 G>A, p.(Arg183His) and c.569 G>T, p.(Arg190Leu), and a previously known splice variant c.477+1G>A were identified, confirming mutational clustering in a highly specific RNA binding motif. Structural analysis and interpretation of the variants' impact on the protein suggests that disruption of extra-ribosomal functions of the protein through binding of mRNA may play a role in the skeletal phenotype of SEMD-RPL13. In addition, we present gonadal and somatic mosaicism for the condition.

3.
Front Genet ; 14: 1174046, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37424725

RESUMO

FOXC1 is a ubiquitously expressed forkhead transcription factor that plays a critical role during early development. Germline pathogenic variants in FOXC1 are associated with anterior segment dysgenesis and Axenfeld-Rieger syndrome (ARS, #602482), an autosomal dominant condition with ophthalmologic anterior segment abnormalities, high risk for glaucoma and extraocular findings including distinctive facial features, as well as dental, skeletal, audiologic, and cardiac anomalies. De Hauwere syndrome is an ultrarare condition previously associated with 6p microdeletions and characterized by anterior segment dysgenesis, joint instability, short stature, hydrocephalus, and skeletal abnormalities. Here, we report clinical findings of two unrelated adult females with FOXC1 haploinsufficiency who have ARS and skeletal abnormalities. Final molecular diagnoses of both patients were achieved using genome sequencing. Patient 1 had a complex rearrangement involving a 4.9 kB deletion including FOXC1 coding region (Hg19; chr6:1,609,721-1,614,709), as well as a 7 MB inversion (Hg19; chr6:1,614,710-8,676,899) and a second deletion of 7.1 kb (Hg19; chr6:8,676,900-8,684,071). Patient 2 had a heterozygous single nucleotide deletion, resulting in a frameshift and a premature stop codon in FOXC1 (NM_001453.3): c.467del, p.(Pro156Argfs*25). Both individuals had moderate short stature, skeletal abnormalities, anterior segment dysgenesis, glaucoma, joint laxity, pes planovalgus, dental anomalies, hydrocephalus, distinctive facial features, and normal intelligence. Skeletal surveys revealed dolichospondyly, epiphyseal hypoplasia of femoral and humeral heads, dolichocephaly with frontal bossin gand gracile long bones. We conclude that haploinsufficiency of FOXC1 causes ARS and a broad spectrum of symptoms with variable expressivity that at its most severe end also includes a phenotype overlapping with De Hauwere syndrome.

4.
Radiographics ; 43(5): e220067, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37053103

RESUMO

Skeletal dysplasias are a heterogeneous collection of genetic disorders characterized by bone and cartilage abnormalities, and they encompass over 400 disorders. These disorders are rare individually, but collectively they are common (approximate incidence of one in 5000 births). Radiologists occasionally encounter skeletal dysplasias in daily practice. In the 1980s, Professor Juergen Spranger proposed a concept suitable for the diagnosis of skeletal dysplasias termed bone dysplasia families. He stated that (a) different bone dysplasias that share a similar skeletal pattern can be grouped into a "family," (b) the final diagnosis is feasible through the provisional recognition of a pattern followed by a more careful analysis, and (c) families of bone dysplasias may be the result of similar pathogenetic mechanisms. The prototypes of bone dysplasia families include dysostosis multiplex family, achondroplasia family, spondyloepiphyseal dysplasia congenita family, and Larsen syndrome-otopalatodigital syndrome family. Since Spranger's proposal, the concept of bone dysplasia families, along with advancing genetic techniques, has been validated and further expanded. Today, this molecularly proven concept enables a simple stepwise approach to be applied to the radiologic diagnosis of skeletal dysplasias. The first step is the categorization of a given case into a family based on pattern recognition, and the second step is more meticulous observation, such as identification of different severities of the same pattern or subtle but distinctive findings. Since major skeletal dysplasias are limited in number, radiologists can be familiar with the representative patterns of these disorders. The authors describe a stepwise radiologic approach to diagnosing major skeletal dysplasia families and review the clinical and genetic features of these disorders. Published under a CC BY 4.0 license. Quiz questions for this article are available through the Online Learning Center. Online supplemental material and the slide presentation from the RSNA Annual Meeting are available for this article.


Assuntos
Doenças do Desenvolvimento Ósseo , Deformidades Congênitas da Mão , Osteocondrodisplasias , Masculino , Humanos , Osteocondrodisplasias/diagnóstico por imagem , Osteocondrodisplasias/genética , Doenças do Desenvolvimento Ósseo/diagnóstico por imagem , Doenças do Desenvolvimento Ósseo/genética , Radiografia
5.
Am J Med Genet A ; 191(7): 1929-1934, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37017437

RESUMO

Seckel syndrome is an ultrarare autosomal recessive genetically heterogenous condition characterized by intrauterine and postnatal growth restriction, proportionate severe short stature, severe microcephaly, intellectual disability, and distinctive facial features including a prominent nose. Up to now, 40 patients with molecularly confirmed Seckel syndrome have been reported with biallelic variants in nine genes: ATR, CENPJ, CEP63, CEP152, DNA2, NIN, NSMCE2, RBBP8, and TRAIP. Homozygosity for nonsense variant (c.129G>A, p.43*) in CEP63 was described in three cousins with microcephaly, short stature, mild to moderate intellectual disability and diagnoses of Seckel syndrome. Here, we report a second family with three siblings who are compound heterozygous for loss-of-function variants in CEP63, c.1125T>G, p.(Tyr375*) and c.595del, p.(Glu199Asnfs*11). All siblings present with microcephaly, prominent nose, and intellectual disability but only one has severe short stature. Two siblings have aggressive behavior, a feature previously not reported in Seckel syndrome. This report adds two novel truncating variants in CEP63 and extends the clinical knowledge on CEP63-related conditions.


Assuntos
Nanismo , Deficiência Intelectual , Microcefalia , Humanos , Deficiência Intelectual/diagnóstico , Deficiência Intelectual/genética , Microcefalia/diagnóstico , Microcefalia/genética , Nanismo/diagnóstico , Nanismo/genética , Fácies , Fenótipo , Ligases/genética , Proteínas de Ciclo Celular/genética
6.
J Bone Miner Res ; 38(5): 692-706, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36896612

RESUMO

Lethal short-limb skeletal dysplasia Al-Gazali type (OMIM %601356), also called dysplastic cortical hyperostosis, Al-Gazali type, is an ultra-rare disorder previously reported in only three unrelated individuals. The genetic etiology for Al-Gazali skeletal dysplasia has up until now been unknown. Through international collaborative efforts involving seven clinical centers worldwide, a cohort of nine patients with clinical and radiographic features consistent with short-limb skeletal dysplasia Al-Gazali type was collected. The affected individuals presented with moderate intrauterine growth restriction, relative macrocephaly, hypertrichosis, large anterior fontanelle, short neck, short and stiff limbs with small hands and feet, severe brachydactyly, and generalized bone sclerosis with mild platyspondyly. Biallelic disease-causing variants in ADAMTSL2 were detected using massively parallel sequencing (MPS) and Sanger sequencing techniques. Six individuals were compound heterozygous and one individual was homozygous for pathogenic variants in ADAMTSL2. In one of the families, pathogenic variants were detected in parental samples only. Overall, this study sheds light on the genetic cause of Al-Gazali skeletal dysplasia and identifies it as a semi-lethal part of the spectrum of ADAMTSL2-related disorders. Furthermore, we highlight the importance of meticulous analysis of the pseudogene region of ADAMTSL2 where disease-causing variants might be located. © 2023 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).


Assuntos
Doenças do Desenvolvimento Ósseo , Deformidades Congênitas dos Membros , Osteocondrodisplasias , Humanos , Doenças do Desenvolvimento Ósseo/genética , Deformidades Congênitas dos Membros/genética , Deformidades Congênitas dos Membros/patologia , Osteocondrodisplasias/genética , Osso e Ossos/patologia , Homozigoto , Proteínas ADAMTS/genética
7.
HGG Adv ; 4(1): 100148, 2023 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-36299998

RESUMO

Mitochondrial diseases are a heterogeneous group of genetic disorders caused by pathogenic variants in genes encoding gene products that regulate mitochondrial function. These genes are located either in the mitochondrial or in the nuclear genome. The TOMM7 gene encodes a regulatory subunit of the translocase of outer mitochondrial membrane (TOM) complex that plays an essential role in translocation of nuclear-encoded mitochondrial proteins into mitochondria. We report an individual with a homozygous variant in TOMM7 (c.73T>C, p.Trp25Arg) that presented with a syndromic short stature, skeletal abnormalities, muscle hypotonia, microvesicular liver steatosis, and developmental delay. Analysis of mouse models strongly suggested that the identified variant is hypomorphic because mice homozygous for this variant showed a milder phenotype than those with homozygous Tomm7 deletion. These Tomm7 mutant mice show pathological changes consistent with mitochondrial dysfunction, including growth defects, severe lipoatrophy, and lipid accumulation in the liver. These mice die prematurely following a rapidly progressive weight loss during the last week of their lives. Tomm7 deficiency causes a unique alteration in mitochondrial function; despite the bioenergetic deficiency, mutant cells show increased oxygen consumption with normal responses to electron transport chain (ETC) inhibitors, suggesting that Tomm7 deficiency leads to an uncoupling between oxidation and ATP synthesis without impairing the function of the tricarboxylic cycle metabolism or ETC. This study presents evidence that a hypomorphic variant in one of the genes encoding a subunit of the TOM complex causes mitochondrial disease.


Assuntos
Doenças Mitocondriais , Membranas Mitocondriais , Camundongos , Animais , Membranas Mitocondriais/metabolismo , Proteínas de Transporte/metabolismo , Mitocôndrias/genética , Doenças Mitocondriais/genética , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial
8.
Genet Med ; 24(11): 2296-2307, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36066546

RESUMO

PURPOSE: Individuals with intellectual disability (ID) and/or neurodevelopment disorders (NDDs) are currently investigated with several different approaches in clinical genetic diagnostics. METHODS: We compared the results from 3 diagnostic pipelines in patients with ID/NDD: genome sequencing (GS) first (N = 100), GS as a secondary test (N = 129), or chromosomal microarray (CMA) with or without FMR1 analysis (N = 421). RESULTS: The diagnostic yield was 35% (GS-first), 26% (GS as a secondary test), and 11% (CMA/FMR1). Notably, the age of diagnosis was delayed by 1 year when GS was performed as a secondary test and the cost per diagnosed individual was 36% lower with GS first than with CMA/FMR1. Furthermore, 91% of those with a negative result after CMA/FMR1 analysis (338 individuals) have not yet been referred for additional genetic testing and remain undiagnosed. CONCLUSION: Our findings strongly suggest that genome analysis outperforms other testing strategies and should replace traditional CMA and FMR1 analysis as a first-line genetic test in individuals with ID/NDD. GS is a sensitive, time- and cost-effective method that results in a confirmed molecular diagnosis in 35% of all referred patients.


Assuntos
Deficiência Intelectual , Transtornos do Neurodesenvolvimento , Criança , Humanos , Deficiência Intelectual/diagnóstico , Deficiência Intelectual/genética , Deficiências do Desenvolvimento/genética , Testes Genéticos/métodos , Análise em Microsséries , Transtornos do Neurodesenvolvimento/genética , Proteína do X Frágil da Deficiência Intelectual/genética
9.
Hum Mutat ; 43(11): 1567-1575, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35842787

RESUMO

Prader-Willi syndrome (PWS; MIM# 176270) is a neurodevelopmental disorder caused by the loss of expression of paternally imprinted genes within the PWS region located on 15q11.2. It is usually caused by either maternal uniparental disomy of chromosome 15 (UPD15) or 15q11.2 recurrent deletion(s). Here, we report a healthy carrier of a balanced X;15 translocation and her two daughters, both with the karyotype 45,X,der(X)t(X;15)(p22;q11.2),-15. Both daughters display symptoms consistent with haploinsufficiency of the SHOX gene and PWS. We explored the architecture of the derivative chromosomes and investigated effects on gene expression in patient-derived neural cells. First, a multiplex ligation-dependent probe amplification methylation assay was used to determine the methylation status of the PWS-region revealing maternal UPD15 in daughter 2, explaining her clinical symptoms. Next, short read whole genome sequencing and 10X genomics linked read sequencing was used to pinpoint the exact breakpoints of the translocation. Finally, we performed transcriptome sequencing on neuroepithelial stem cells from the mother and from daughter 1 and observed biallelic expression of genes in the PWS region (including SNRPN) in daughter 1. In summary, our multi-omics analysis highlights two different PWS mechanisms in one family and provide an example of how structural variation can affect imprinting through long-range interactions.


Assuntos
Metilação de DNA , Síndrome de Prader-Willi , Cromossomos Humanos Par 15/genética , Feminino , Impressão Genômica , Humanos , Síndrome de Prader-Willi/genética , Translocação Genética , Dissomia Uniparental/genética , Proteínas Centrais de snRNP/genética
10.
Front Endocrinol (Lausanne) ; 13: 862908, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35769074

RESUMO

Nail-patella syndrome (NPS, OMIM #161200) is a rare autosomal dominant disorder with symptoms from many different parts of the body, including nails, knees, elbows, pelvis, kidneys and eyes. It is caused by truncating variants in the LMX1B gene, which encodes a transcription factor with important roles during embryonic development, including dorsoventral patterning of the limbs. To our knowledge, inversions disrupting the LMX1B gene have not been reported. Here, we report a family with an inversion disrupting the LMX1B gene in five affected family members with mild but variable clinical features of NPS. Our finding demonstrates that genomic rearrangements must be considered a possible cause of NPS.


Assuntos
Síndrome da Unha-Patela , Seguimentos , Humanos , Proteínas com Homeodomínio LIM/genética , Síndrome da Unha-Patela/diagnóstico , Síndrome da Unha-Patela/genética , Suécia , Fatores de Transcrição/genética
11.
NPJ Genom Med ; 7(1): 11, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-35169139

RESUMO

Pathogenic variants in MYH3 cause distal arthrogryposis type 2A and type 2B3 as well as contractures, pterygia and spondylocarpotarsal fusion syndromes types 1A and 1B. These disorders are ultra-rare and their natural course and phenotypic variability are not well described. In this study, we summarize the clinical features and genetic findings of 17 patients from 10 unrelated families with vertebral malformations caused by dominant or recessive pathogenic variants in MYH3. Twelve novel pathogenic variants in MYH3 (NM_002470.4) were identified: three of them were de novo or inherited in autosomal dominant way and nine were inherited in autosomal recessive way. The patients had vertebral segmentation anomalies accompanied with variable joint contractures, short stature and dysmorphic facial features. There was a significant phenotypic overlap between dominant and recessive MYH3-associated conditions regarding the degree of short stature as well as the number of vertebral fusions. All monoallelic variants caused significantly decreased SMAD3 phosphorylation, which is consistent with the previously proposed pathogenic mechanism of impaired canonical TGF-ß signaling. Most of the biallelic variants were predicted to be protein-truncating, while one missense variant c.4244T>G,p.(Leu1415Arg), which was inherited in an autosomal recessive way, was found to alter the phosphorylation level of p38, suggesting an inhibition of the non-canonical pathway of TGF-ß signaling. In conclusion, the identification of 12 novel pathogenic variants and overlapping phenotypes in 17 affected individuals from 10 unrelated families expands the mutation and phenotype spectrum of MYH3-associated skeletal disorders. We show that disturbances of canonical or non-canonical TGF-ß signaling pathways are involved in pathogenesis of MYH3-associated skeletal fusion (MASF) syndrome.

12.
J Bone Miner Res ; 37(2): 226-235, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34668226

RESUMO

Osteopetrosis is a group of rare inherited skeletal disorders characterized by a marked increase in bone density due to deficient bone resorption. Pathogenic variants in several genes involved in osteoclast differentiation and/or function have been reported to cause osteopetrosis. Solute carrier family 4 member 2 (SLC4A2, encoding anion exchanger 2) plays an important role in osteoclast differentiation and function by exchange of Cl- with HCO3- . Biallelic Slc4a2 loss-of-function mutations in mice and cattle lead to osteopetrosis with osteoclast deficiency; however, pathogenic SLC4A2 variants in humans have not been reported. In this study, we describe a patient with autosomal recessive osteopetrosis due to biallelic pathogenic variants in SLC4A2. We identified novel compound heterozygous variants in SLC4A2 (NM_003040.4: c.556G>A [p.A186T] and c.1658T>C [p.V553A]) by exome sequencing. The measurement of intracellular Cl- showed that the variants decrease the anion exchange activity of SLC4A2. The impact of the variants on osteoclast differentiation was assessed by a gene knockout-rescue system using a mouse macrophage cell line, RAW 264.7. The Slc4a2-knockout cells show impaired osteoclastogenesis, which was rescued by the wild-type SLC4A2, but not by the mutant SLC4A2s. Immunofluorescence and pit assay revealed that the mutant SLC4A2s leads to abnormal podosome belt formation with impaired bone absorption. This is the first report on an individual affected by SLC4A2-associated osteopetrosis (osteopetrosis, Ikegawa type). With functional studies, we prove that the variants lead to SLC4A2 dysfunction, which altogether supports the importance of SLC4A2 in human osteoclast differentiation. © 2021 American Society for Bone and Mineral Research (ASBMR).


Assuntos
Reabsorção Óssea , Osteopetrose , Animais , Reabsorção Óssea/patologia , Bovinos , Linhagem Celular , Antiportadores de Cloreto-Bicarbonato/genética , Antiportadores de Cloreto-Bicarbonato/metabolismo , Humanos , Mutação/genética , Osteoclastos/metabolismo , Osteopetrose/patologia
13.
J Clin Endocrinol Metab ; 107(4): e1610-e1619, 2022 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-34791361

RESUMO

CONTEXT: Pseudohypoparathyroidism type Ib (PHP1B) is characterized by hypocalcemia and hyperphosphatemia due to parathyroid hormone resistance in the proximal renal tubules. Maternal pathogenic STX16/GNAS variants leading to maternal epigenetic GNAS changes impair expression of the stimulatory G protein alpha-subunit (Gsα) thereby causing autosomal dominant PHP1B. In contrast, genetic defects responsible for sporadic PHP1B (sporPHP1B) remain mostly unknown. OBJECTIVE: Determine whether PHP1B encountered after in vitro fertilization (IVF) or intracytoplasmic sperm injection (ICSI) causes GNAS remethylation defects similar to those in sporPHP1B. DESIGN: Retrospective analysis. RESULTS: Nine among 36 sporPHP1B patients investigated since 2000, all with loss of methylation (LOM) at the 3 maternal GNAS differentially methylated regions (DMRs) and gain of methylation at the paternal NESP DMR, had been conceived through IVF or ICSI. Besides abnormal GNAS methylation, IVF/ICSI PHP1B cases revealed no additional imprinting defects. Three of these PHP1B patients have dizygotic twins, and 4 have IVF/ICSI-conceived siblings, all with normal GNAS methylation; 2 unaffected younger siblings were conceived naturally. CONCLUSION: Sporadic and IVF/ICSI-conceived PHP1B patients revealed indistinguishable epigenetic changes at all 4 GNAS DMRs, thus suggesting a similar underlying disease mechanism. Given that remethylation at the 3 maternal DMRs occurs during oogenesis, male factors are unlikely to cause LOM postfertilization. Instead, at least some of the sporPHP1B variants could be caused by a defect or defects in an oocyte-expressed gene that is required for fertility and for re-establishing maternal GNAS methylation imprints. It remains uncertain, however, whether the lack of GNAS remethylation alone and the resulting reduction in Gsα expression is sufficient to impair oocyte maturation.


Assuntos
Cromograninas , Pseudo-Hipoparatireoidismo , Cromograninas/genética , Metilação de DNA , Subunidades alfa Gs de Proteínas de Ligação ao GTP/genética , Humanos , Masculino , Oogênese , Pseudo-Hipoparatireoidismo/genética , Estudos Retrospectivos , Pseudo-Hipoparatireoidismo
14.
J Hum Genet ; 66(10): 995-1008, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33875766

RESUMO

Skeletal ciliopathies are a heterogenous group of disorders with overlapping clinical and radiographic features including bone dysplasia and internal abnormalities. To date, pathogenic variants in at least 30 genes, coding for different structural cilia proteins, are reported to cause skeletal ciliopathies. Here, we summarize genetic and phenotypic features of 34 affected individuals from 29 families with skeletal ciliopathies. Molecular diagnostic testing was performed using massively parallel sequencing (MPS) in combination with copy number variant (CNV) analyses and in silico filtering for variants in known skeletal ciliopathy genes. We identified biallelic disease-causing variants in seven genes: DYNC2H1, KIAA0753, WDR19, C2CD3, TTC21B, EVC, and EVC2. Four variants located in non-canonical splice sites of DYNC2H1, EVC, and KIAA0753 led to aberrant splicing that was shown by sequencing of cDNA. Furthermore, CNV analyses showed an intragenic deletion of DYNC2H1 in one individual and a 6.7 Mb de novo deletion on chromosome 1q24q25 in another. In five unsolved cases, MPS was performed in family setting. In one proband we identified a de novo variant in PRKACA and in another we found a homozygous intragenic deletion of IFT74, removing the first coding exon and leading to expression of a shorter message predicted to result in loss of 40 amino acids at the N-terminus. These findings establish IFT74 as a new skeletal ciliopathy gene. In conclusion, combined single nucleotide variant, CNV and cDNA analyses lead to a high yield of genetic diagnoses (90%) in a cohort of patients with skeletal ciliopathies.


Assuntos
Doenças do Desenvolvimento Ósseo/genética , Ciliopatias/genética , Predisposição Genética para Doença , Isoformas de Proteínas/genética , Adulto , Idoso , Doenças do Desenvolvimento Ósseo/epidemiologia , Doenças do Desenvolvimento Ósseo/patologia , Ciliopatias/epidemiologia , Ciliopatias/patologia , Dineínas do Citoplasma/genética , Proteínas do Citoesqueleto/genética , Feminino , Genoma Humano/genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Masculino , Proteínas de Membrana/genética , Proteínas Associadas aos Microtúbulos/genética , Pessoa de Meia-Idade , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Sequenciamento Completo do Genoma
15.
Genome Med ; 13(1): 40, 2021 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-33726816

RESUMO

BACKGROUND: We report the findings from 4437 individuals (3219 patients and 1218 relatives) who have been analyzed by whole genome sequencing (WGS) at the Genomic Medicine Center Karolinska-Rare Diseases (GMCK-RD) since mid-2015. GMCK-RD represents a long-term collaborative initiative between Karolinska University Hospital and Science for Life Laboratory to establish advanced, genomics-based diagnostics in the Stockholm healthcare setting. METHODS: Our analysis covers detection and interpretation of SNVs, INDELs, uniparental disomy, CNVs, balanced structural variants, and short tandem repeat expansions. Visualization of results for clinical interpretation is carried out in Scout-a custom-developed decision support system. Results from both singleton (84%) and trio/family (16%) analyses are reported. Variant interpretation is done by 15 expert teams at the hospital involving staff from three clinics. For patients with complex phenotypes, data is shared between the teams. RESULTS: Overall, 40% of the patients received a molecular diagnosis ranging from 19 to 54% for specific disease groups. There was heterogeneity regarding causative genes (n = 754) with some of the most common ones being COL2A1 (n = 12; skeletal dysplasia), SCN1A (n = 8; epilepsy), and TNFRSF13B (n = 4; inborn errors of immunity). Some causative variants were recurrent, including previously known founder mutations, some novel mutations, and recurrent de novo mutations. Overall, GMCK-RD has resulted in a large number of patients receiving specific molecular diagnoses. Furthermore, negative cases have been included in research studies that have resulted in the discovery of 17 published, novel disease-causing genes. To facilitate the discovery of new disease genes, GMCK-RD has joined international data sharing initiatives, including ClinVar, UDNI, Beacon, and MatchMaker Exchange. CONCLUSIONS: Clinical WGS at GMCK-RD has provided molecular diagnoses to over 1200 individuals with a broad range of rare diseases. Consolidation and spread of this clinical-academic partnership will enable large-scale national collaboration.


Assuntos
Atenção à Saúde , Doenças Raras/diagnóstico , Doenças Raras/genética , Sequenciamento Completo do Genoma , Estudos de Coortes , Variações do Número de Cópias de DNA/genética , Heterogeneidade Genética , Genômica , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Disseminação de Informação , Padrões de Herança/genética , Repetições de Microssatélites/genética , Mutação/genética , Suécia , Dissomia Uniparental/genética
16.
Am J Med Genet A ; 185(2): 517-527, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33398909

RESUMO

Bone dysplasias (osteochondrodysplasias) are a large group of conditions associated with short stature, skeletal disproportion, and radiographic abnormalities of skeletal elements. Nearly all are genetic in origin. We report a series of seven children with similar findings of chondrodysplasia and growth failure following early hematopoietic stem cell transplantation (HSCT) for pediatric non-oncologic disease: hemophagocytic lymphohistiocytosis or HLH (five children, three with biallelic HLH-associated variants [in PRF1 and UNC13D] and one with HLH secondary to visceral Leishmaniasis), one child with severe combined immunodeficiency and one with Omenn syndrome (both children had biallelic RAG1 pathogenic variants). All children had normal growth and no sign of chondrodysplasia at birth and prior to their primary disease. After HSCT, all children developed growth failure, with standard deviation scores for height at or below -3. Radiographically, all children had changes in the spine, metaphyses and epiphyses, compatible with a spondyloepimetaphyseal dysplasia. Genomic sequencing failed to detect pathogenic variants in genes associated with osteochondrodysplasias. We propose that such chondrodysplasia with growth failure is a novel, rare, but clinically important complication following early HSCT for non-oncologic pediatric diseases. The pathogenesis is unknown but could possibly involve loss or perturbation of the cartilage-bone stem cell population.


Assuntos
Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Linfo-Histiocitose Hemofagocítica/genética , Osteocondrodisplasias/genética , Criança , Pré-Escolar , Feminino , Humanos , Linfo-Histiocitose Hemofagocítica/complicações , Linfo-Histiocitose Hemofagocítica/diagnóstico , Linfo-Histiocitose Hemofagocítica/terapia , Masculino , Proteínas de Membrana/genética , Osteocondrodisplasias/complicações , Osteocondrodisplasias/diagnóstico , Osteocondrodisplasias/terapia , Perforina/genética , Resultado do Tratamento
17.
Radiographics ; 41(1): 192-209, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33186059

RESUMO

Type II collagen is a major component of the cartilage matrix. Pathogenic variants (ie, disease-causing aberrations) in the type II collagen gene (COL2A1) lead to an abnormal structure of type II collagen, causing a large group of skeletal dysplasias termed type II collagenopathies. Because type II collagen is also located in the vitreous body of the eyes and inner ears, type II collagenopathies are commonly associated with vitreoretinal degeneration and hearing impairment. Type II collagenopathies can be radiologically divided into two major groups: the spondyloepiphyseal dysplasia congenita (SEDC) group and the Kniest-Stickler group. The SEDC group is characterized by delayed ossification of the juxtatruncal bones, including pear-shaped vertebrae. These collagenopathies comprise achondrogenesis type 2, hypochondrogenesis, SEDC, and other uncommon subtypes. The Kniest-Stickler group is characterized by disordered tubular bone growth that leads to "dumbbell" deformities. It comprises Kniest dysplasia and Stickler dysplasia type 1, whose radiographic manifestations overlap with those of type XI collagenopathies (a group of disorders due to abnormal type XI collagen) such as Stickler dysplasia types 2 and 3. This phenotypic overlap is caused by type II and type XI collagen molecules sharing part of the same connective tissues. The authors describe the diagnostic pathways to type II and type XI collagenopathies and the associated differential diagnoses. In addition, they review the clinical features and genetic bases of these conditions, which radiologists should know to participate in multidisciplinary care and translational research. Online supplemental material is available for this article. ©RSNA, 2020.


Assuntos
Acondroplasia , Doenças do Colágeno , Doença da Membrana Hialina , Osteocondrodisplasias , Cartilagem , Doenças do Colágeno/diagnóstico por imagem , Humanos , Recém-Nascido , Osteocondrodisplasias/diagnóstico por imagem
19.
Jpn J Radiol ; 38(3): 193-206, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31965514

RESUMO

Ciliopathy encompasses a diverse group of autosomal recessive genetic disorders caused by mutations in genes coding for components of the primary cilia. Skeletal ciliopathy forms a subset of ciliopathies characterized by distinctive skeletal changes. Common skeletal ciliopathies include Jeune asphyxiating thoracic dysplasia, Ellis-van Creveld syndrome, Sensenbrenner syndrome, and short-rib polydactyly syndromes. These disorders share common clinical and radiological features. The clinical hallmarks comprise thoracic hypoplasia with respiratory failure, body disproportion with a normal trunk length and short limbs, and severely short digits occasionally accompanied by polydactyly. Reflecting the clinical features, the radiological hallmarks consist of a narrow thorax caused by extremely short ribs, normal or only mildly affected spine, shortening of the tubular bones, and severe brachydactyly with or without polydactyly. Other radiological clues include trident ilia/pelvis and cone-shaped epiphysis. Skeletal ciliopathies are commonly associated with extraskeletal anomalies, such as progressive renal degeneration, liver disease, retinopathy, cardiac anomalies, and cerebellar abnormalities. In this article, we discuss the radiological pattern recognition approach to skeletal ciliopathies. We also describe the clinical and genetic features of skeletal ciliopathies that the radiologists should know for them to play an appropriate role in multidisciplinary care and scientific advancement of these complicated disorders.


Assuntos
Osso e Ossos/anormalidades , Ciliopatias/diagnóstico por imagem , Craniossinostoses/diagnóstico por imagem , Nanismo/diagnóstico por imagem , Displasia Ectodérmica/diagnóstico por imagem , Síndrome de Ellis-Van Creveld/diagnóstico por imagem , Interpretação de Imagem Assistida por Computador/métodos , Osteocondrodisplasias/diagnóstico por imagem , Radiografia/métodos , Osso e Ossos/diagnóstico por imagem , Feminino , Humanos , Masculino
20.
Genet Med ; 22(5): 857-866, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31949312

RESUMO

PURPOSE: Four patients with Saul-Wilson syndrome were reported between 1982 and 1994, but no additional individuals were described until 2018, when the molecular etiology of the disease was elucidated. Hence, the clinical phenotype of the disease remains poorly defined. We address this shortcoming by providing a detailed characterization of its phenotype. METHODS: Retrospective chart reviews were performed and primary radiographs assessed for all 14 individuals. Four individuals underwent detailed ophthalmologic examination by the same physician. Two individuals underwent gynecologic evaluation. Z-scores for height, weight, head circumference and body mass index were calculated at different ages. RESULTS: All patients exhibited short stature, with sharp decline from the mean within the first months of life, and a final height Z-score between -4 and -8.5 standard deviations. The facial and radiographic features evolved over time. Intermittent neutropenia was frequently observed. Novel findings included elevation of liver transaminases, skeletal fragility, rod-cone dystrophy, and cystic macular changes. CONCLUSIONS: Saul-Wilson syndrome presents a remarkably uniform phenotype, and the comprehensive description of our cohort allows for improved understanding of the long-term morbidity of the condition, establishment of follow-up recommendations for affected individuals, and documentation of the natural history into adulthood for comparison with treated patients, when therapeutics become available.


Assuntos
Nanismo , Adulto , Feminino , Humanos , Fenótipo , Estudos Retrospectivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...