Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancers (Basel) ; 16(9)2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38730673

RESUMO

Glioblastoma multiforme (GBM) is the deadliest, most heterogeneous, and most common brain cancer in adults. Not only is there an urgent need to identify efficacious therapeutics, but there is also a great need to pair these therapeutics with biomarkers that can help tailor treatment to the right patient populations. We built patient drug response models by integrating patient tumor transcriptome data with high-throughput cell line drug screening data as well as Bayesian networks to infer relationships between patient gene expression and drug response. Through these discovery pipelines, we identified agents of interest for GBM to be effective across five independent patient cohorts and in a mouse avatar model: among them are a number of MEK inhibitors (MEKis). We also predicted phosphoglycerate dehydrogenase enzyme (PHGDH) gene expression levels to be causally associated with MEKi efficacy, where knockdown of this gene increased tumor sensitivity to MEKi and overexpression led to MEKi resistance. Overall, our work demonstrated the power of integrating computational approaches. In doing so, we quickly nominated several drugs with varying known mechanisms of action that can efficaciously target GBM. By simultaneously identifying biomarkers with these drugs, we also provide tools to select the right patient populations for subsequent evaluation.

2.
bioRxiv ; 2023 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-36865329

RESUMO

Diffuse midline glioma (DMG) is a leading cause of brain tumor death in children. In addition to hallmark H3.3K27M mutations, significant subsets also harbor alterations of other genes, such as TP53 and PDGFRA. Despite the prevalence of H3.3K27M, the results of clinical trials in DMG have been mixed, possibly due to the lack of models recapitulating its genetic heterogeneity. To address this gap, we developed human iPSC-derived tumor models harboring TP53R248Q with or without heterozygous H3.3K27M and/or PDGFRAD842V overexpression. The combination of H3.3K27M and PDGFRAD842V resulted in more proliferative tumors when gene-edited neural progenitor (NP) cells were implanted into mouse brains compared to NP with either mutation alone. Transcriptomic comparison of tumors and their NP cells of origin identified conserved JAK/STAT pathway activation across genotypes as characteristic of malignant transformation. Conversely, integrated genome-wide epigenomic and transcriptomic analyses, as well as rational pharmacologic inhibition, revealed targetable vulnerabilities unique to the TP53R248Q; H3.3K27M; PDGFRAD842V tumors and related to their aggressive growth phenotype. These include AREG-mediated cell cycle control, altered metabolism, and vulnerability to combination ONC201/trametinib treatment. Taken together, these data suggest that cooperation between H3.3K27M and PDGFRA influences tumor biology, underscoring the need for better molecular stratification in DMG clinical trials.

3.
Neoplasia ; 36: 100859, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36599191

RESUMO

Among children and adolescents in the United States (0 to 19 years old), brain and other central nervous system tumors are the second most common types of cancers, surpassed in incidence only by leukemias. Despite significant progress in the diagnosis and treatment modalities, brain cancer remains the leading cause of death in the pediatric population. There is an obvious unfulfilled need to streamline the therapeutic strategies and improve survival for these patients. For that purpose, preclinical models play a pivotal role. Numerous models are currently used in pediatric brain tumor research, including genetically engineered mouse models, patient-derived xenografts and cell lines, and newer models that utilize novel technologies such as genome engineering and organoids. Furthermore, extensive studies by the Children's Brain Tumor Network (CBTN) researchers and others have revealed multiomic landscapes of variable pediatric brain tumors. Combined with such integrative data, these novel technologies have enabled numerous applicable models. Genome engineering, including CRISPR/Cas9, expanded the flexibility of modeling. Models generated through genome engineering enabled studying particular genetic alterations in clean isogenic backgrounds, facilitating the dissection of functional mechanisms of those mutations in tumor biology. Organoids have been applied to study tumor-to-tumor-microenvironment interactions and to address developmental aspects of tumorigenesis, which is essential in some pediatric brain tumors. Other modalities, such as humanized mouse models, could potentially be applied to pediatric brain tumors. In addition to current valuable models, such novel models are anticipated to expedite functional tumor biology study and establish effective therapeutics for pediatric brain tumors.


Assuntos
Neoplasias Encefálicas , Animais , Camundongos , Humanos , Criança , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/terapia , Neoplasias Encefálicas/patologia , Encéfalo/patologia , Modelos Animais de Doenças , Mutação , Microambiente Tumoral
4.
Oncogene ; 41(31): 3876-3885, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35780181

RESUMO

Glioblastoma is the most common malignant brain cancer with dismal survival and prognosis. Temozolomide (TMZ) is a first-line chemotherapeutic agent for glioblastoma, but the emergence of drug resistance limits its anti-tumor activity. We previously discovered that the interferon inducible guanylate binding protein 3 (GBP3) is highly elevated and promotes tumorigenicity of glioblastoma. Here, we show that TMZ treatment significantly upregulates the expression of GBP3 and stimulator of interferon genes (STING), both of which increase TMZ-induced DNA damage repair and reduce cell apoptosis of glioblastoma cells. Mechanistically, relying on its N-terminal GTPase domain, GBP3 physically interacts with STING to stabilize STING protein levels, which in turn induces expression of p62 (Sequestosome 1), nuclear factor erythroid 2 like 2 (NFE2L2, NRF2), and O6-methlyguanine-DNA-methyltransferase (MGMT), leading to the resistance to TMZ treatment. Reducing GBP3 levels by RNA interference in glioblastoma cells markedly increases the sensitivity to TMZ treatment in vitro and in murine glioblastoma models. Clinically, GBP3 expression is high and positively correlated with STING, NRF2, p62, and MGMT expression in human glioblastoma tumors, and is associated with poor outcomes. These findings provide novel insight into TMZ resistance and suggest that GBP3 may represent a novel potential target for the treatment of glioblastoma.


Assuntos
Neoplasias Encefálicas , Proteínas de Ligação ao GTP/metabolismo , Glioblastoma , Animais , Antineoplásicos Alquilantes/farmacologia , Antineoplásicos Alquilantes/uso terapêutico , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Linhagem Celular Tumoral , Dano ao DNA , Metilases de Modificação do DNA/genética , Enzimas Reparadoras do DNA/genética , Enzimas Reparadoras do DNA/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Glioblastoma/metabolismo , Humanos , Interferons/genética , Camundongos , Fator 2 Relacionado a NF-E2/genética , Temozolomida/farmacologia , Temozolomida/uso terapêutico
6.
Cancer Immunol Immunother ; 71(8): 1863-1875, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35001153

RESUMO

Glioblastoma multiforme (GBM) is among the most aggressive, treatment-resistant cancers, and despite standard of care surgery, radiation and chemotherapy, is invariably fatal. GBM is marked by local and systemic immunosuppression, contributing to resistance to existing immunotherapies that have had success in other tumor types. Memory T cells specific for previous infections reside in tissues throughout the host and are capable of rapid and potent immune activation. Here, we show that virus-specific memory CD8 + T cells expressing tissue-resident markers populate the mouse and human glioblastoma microenvironment. Reactivating virus-specific memory T cells through intratumoral delivery of adjuvant-free virus-derived peptide triggered local immune activation. This delivery translated to antineoplastic effects, which improved survival in a murine glioblastoma model. Our results indicate that virus-specific memory T cells are a significant part of the glioblastoma immune microenvironment and may be leveraged to promote anti-tumoral immunity.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Animais , Humanos , Tolerância Imunológica , Imunoterapia/métodos , Células T de Memória , Camundongos , Microambiente Tumoral
7.
Oper Neurosurg (Hagerstown) ; 17(3): 277-285, 2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-30576562

RESUMO

BACKGROUND: Cerebral bypass remains important for the treatment of complex cerebral aneurysms including dissecting, giant, and fusiform aneurysms not amenable to endovascular treatment or simple clip ligation. For such aneurysms involving the anterior communicating artery complex or its branches, distal anterior cerebral artery (ACA) A3-A3 side-to-side bypass represents a valuable treatment option. Distal ACA in situ anastomosis is recognized to be technically demanding mainly due to the relative depth and narrowness of the interhemispheric surgical corridor and type of anastomosis. OBJECTIVE: To demonstrate technical nuances of A3-A3 side-to-side in situ bypass surgery through case illustrations and operative videos. METHODS: Elements of the procedure relating to positioning, approach, and anastomosis which have evolved in the operative technique of the senior author were collated based on review of clinical case material, imaging and video recordings of ACA aneurysms treated with side-to-side in situ A3-A3 bypass procedure. Technical elements were contrasted with relevant literature. RESULTS: Nuances relative to patient positioning, selection of craniotomy variants, adjunctive intraoperative tools and microsurgical nuances of the side-to-side bypass procedure are reviewed. Three illustrative operative video cases, along with illustrations, are provided to complement the description of the nuances. CONCLUSION: In the light of the inherent technical difficulty, as well as the rather limited case volumes, the technical tips provided may contribute to bringing additional refinement and simplicity to the A3-A3 bypass procedure.


Assuntos
Artéria Cerebral Anterior/cirurgia , Aneurisma Intracraniano/cirurgia , Procedimentos Neurocirúrgicos/métodos , Idoso , Anastomose Cirúrgica , Revascularização Cerebral/métodos , Craniotomia/métodos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...