Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 9(39): 34005-34014, 2017 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-28910529

RESUMO

Here, we report on the development of novel Zn-, Zn-Cr-, and Zn-Cu-containing catalysts using magnetic silica (Fe3O4-SiO2) as the support. Transmission electron microscopy, powder X-ray diffraction, and X-ray photoelectron spectroscopy (XPS) showed that the iron oxide nanoparticles are located in mesoporous silica pores and the magnetite (spinel) structure remains virtually unchanged despite the incorporation of Zn and Cr. According to XPS data, the Zn and Cr species are intermixed within the magnetite structure. In the case of the Zn-Cu-containing catalysts, a separate Cu2O phase was also observed along with the spinel structure. The catalytic activity of these catalysts was tested in methanol synthesis from syngas (CO + H2). The catalytic experiments showed an improved catalytic performance of Zn- and Zn-Cr-containing magnetic silicas compared to that of the ZnO-SiO2 catalyst. The best catalytic activity was obtained for the Zn-Cr-containing magnetic catalyst prepared with 1 wt % Zn and Cr each. X-ray absorption spectroscopy demonstrated the presence of oxygen vacancies near Fe and Zn in Zn-containing, and even more in Zn-Cr-containing, magnetic silica (including oxygen vacancies near Cr ions), revealing a correlation between the catalytic properties and oxygen vacancies. The easy magnetic recovery, robust synthetic procedure, and high catalytic activity make these catalysts promising for practical applications.

2.
ACS Appl Mater Interfaces ; 9(3): 2285-2294, 2017 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-28029247

RESUMO

A new family of Ni-, Co-, and Cr-doped Zn-containing magnetic oxide nanoparticles (NPs) stabilized by polyphenylquinoxaline (PPQ) and hyperbranched pyridylphenylene polymer (PPP) has been developed. These NPs have been synthesized by thermal decomposition of Zn and doping metal acetylacetonates in the reaction solution of preformed magnetite NPs, resulting in single-crystal NPs with spinel structure. For the PPQ-capped NPs, it was demonstrated that all three types of metal species (Fe, Zn, and a doping metal) reside within the same NPs, the surface of which is enriched with Zn and a doping metal, while the deeper layers are enriched with Fe. The Cr-doped NPs at the high Cr loading are an exception due to favored deposition of Cr on magnetite located in the NP depth. The PPP-capped NPs exhibit similar morphology and crystallinity; however, the detailed study of the NP composition was barred due to the high PPP amount retained on the NP surface. The catalyst testing in syngas conversion to methanol demonstrated outstanding catalytic properties of doped Zn-containing magnetic oxides, whose activities are dependent on the doping metal content and on the stabilizing polymer. The PPP stabilization allows for better access to the catalytic species due to the open and rigid polymer architecture and most likely optimized distribution of doping species. Repeat experiments carried out after magnetic separation of catalysts from the reaction mixture showed excellent catalyst stability even after five consecutive catalytic runs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...